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Data wrangling using dplyr

Introduction
Transforming and combining data from different sources into formats suitable for statistical analysis and
visualization lies at the heart of the data science workflow. In many data science applications, an estimated
50% to 80% of a project is spent on data collection, cleaning, and wrangling. Today, we will be introducing the
dplyr, tidyr, and lubridate packages. Together with stringr (string operations using regular expressions),
these packages offer functionality for the majority of data cleaning and reshaping task in R.

RStudio has a number of great cheat sheets available online: https://rstudio.com/resources/cheatsheets/.
Check out the "Data transformation with dplyr cheat sheet!

The data
For this exercise, we will be using data from Five Thirty Eight’s Presidential Endorsement Tracker, which
records endorsements of American presidential primary candidates from current/former government officials
and high-ranked political party members (i.e. members of the Democratic National Convention). For this
dataset, an endorsement is defined as a “public display or pronouncement of support that articulates or
strongly implies that a candidate is an endorser’s current No. 1 choice for president”. This means that there
is only one endorsement linked to each endorser, and that they can change over the course of the primary
season. In the case of ambiguities, Five Thirty Eight reaches out to offices of the candidates and endorsers
for a clarification.

In this model, endorsements are “ranked” by their perceived relative value based on their current/former
position. For the 2020 Democratic Presidential Primaries, it comprises of the following:

1. Current and former presidents and vice presidents (10 points).
2. Current party leaders: Nancy Pelosi (House speaker), Steny Hoyer (House majority leader), James

Clyburn (House majority whip), Chuck Schumer (Senate minority leader), Dick Durbin (Senate minority
whip) and Tom Perez (Democratic National Committee chair) (10 points).

3. Current governors, including governor equivalents from the U.S. territories and Washington, D.C.1 (8
points).

4. Current U.S. Senators (6 points).
5. Past presidential and vice presidential nominees (5 points).
6. Former party leaders2 (5 points).
7. Former 2020 presidential candidates who appeared in at least one debate and have since dropped out (5

points).
8. Current U.S. representatives, including non-voting delegates from U.S. territories (3 points).
9. Mayors of cities with at least 300,000 people (3 points).

10. Officials holding statewide or territory-wide elected office, excluding positions (e.g. commissioners) that
are held by multiple people at once (2 points).

11. State and territorial legislatures’ majority and minority leaders (2 points).3
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12. Other DNC members (1 point).

The dataset contains the following variables:

• date: date endorsement took place
• endorser: individual who is endorsing a presidential candidate
• position: endorser’s position in government
• state: origin state of endorser
• endorsee: presidential candidate endorsed
• endorser.party: political party of the endorser
• source: link to endorsement (if online)
• points: # of “endorsement points” attributed to the endorser (see above for more details)
• drop: Has the candidate dropped out of the race? (1 = yes)
• drop_date: date that the candidate dropped out (This variable is not part of ‘fivethirtyeight. Allison

coded this variable for us. Thank you!).

Below, notice the additional parameters we give read.csv(). We covered stringsAsFactors last week: it
prevents string variables from being imported as factors and instead defaults to character type.
library(foreign)
raw <- read.csv("538_presidential_endorsements.csv",

stringsAsFactors = FALSE)

Functions in dplyr

dplyr uses a strategy called “Split - Apply - Combine”. Some of the key functions include:

• select(): Subset columns.
• filter(): Subset rows.
• arrange(): Reorders rows.
• mutate(): Add columns to existing data.
• summarise() or summarize(): Summarizing the data set.

First, lets download the package and call it using the library() function.
# install.packages("dplyr")
library(dplyr)

Using select() and introducing the Piping Operator %>%

Using the so-called piping operator will make the R code faster and more legible, because we are not saving
every output in a separate data frame, but passing it on to a new function. First, let’s use only a subsample
of variables in the data frame.

Notice a couple of things in the code below:

• We can assign the output to a new data set.
• We use the piping operator to connect commands and create a single flow of operations.
• We can use the select function to rename variables.
• Instead of typing each variable, we can select sequences of variables.
• Note that the everything() command inside select() will select all variables.

NOTE: The :: operator specifies that we want to use the object select() from the package dplyr. This
explicit programming is useful when functions or objects are contained in multiple packages to avoid confusion.
In practice, I now always write dplyr::select() because I have come across a few instances where code
broke because select was part of another package.
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Selecting variables with select()

# Explicitly selecting variables one-by-one
df_sub1 <- raw %>%

dplyr::select(position,
endorsee)

# Selecting multiple variables at once
df_sub2 <- raw %>%

dplyr::select(position,
endorsee,
source:drop_date) #Selecting a number of columns.

names(df_sub2)

## [1] "position" "endorsee" "source" "category" "points" "drop"
## [7] "drop_date"
# Later we will also learn a few additional tricks using helper functions

Explicitly dropping variables with select()

Suppose, we didn’t really want to select the source variable. We can use select() to drop variables.
df_sub3 <- raw %>%

dplyr::select(-source)

Reordering variables with select()

df_sub3 <- raw %>%
dplyr::select(date,

endorsee,
endorser,
points)

Renaming variables with select()

We can also use select() to rename variables. Below, we need to use the everything() function if we don’t
want to drop the remaining variables in the process
names(raw)

## [1] "date" "position" "state" "endorser"
## [5] "endorsee" "endorser.party" "source" "category"
## [9] "points" "drop" "drop_date"
df <- raw %>%

dplyr::select(endorse_date = date,
endorser_party = endorser.party,
everything())

Helper functions

dplyr has a number of helper functions — and that is where the magic lies. These can be used with either
select() or filter(). Here are some useful functions:

• starts_with()
• ends_with()
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• contains()
• matches(): More general than contains() because it allows for regular expressions. We won’t do an

example here because we will go over regular expressions in another session.

For example, let’s create a data frame with all variables that contain the word “endorse”.
df_endorse <- df %>%

dplyr::select(contains("endorse"))
names(df_endorse)

## [1] "endorse_date" "endorser_party" "endorser" "endorsee"

Ot we could select all variables that start with the letter “p”.
df_startsp <- df %>%

dplyr::select(starts_with("p"))
names(df_startsp)

## [1] "position" "points"

Introducting filter()

While select() operates on columns, filter() operates on observations (rows). We always use filter()
in combination with logical statements. First, let’s briefly review the most commonly used logical statements
from last week.

• x < y
• x <= y
• x == y
• x != y
• x >= y
• x > y
• x %in% c(a, b, c) is TRUE if x is in the vector c(a, b, c).

There are two more important logical statements we frequently use in data wrangling. * is.na() * !is.na()

First, let’s take a look at the endorser_party variable we created above using the table() function.
Unsurprisingly, most endorsements come from Democrats.

Who are the non-Democrat endorsers? We can use filter() to do so.
table(df$endorser_party)

##
## D I NPP R
## 992 3 2 1
df_nondem <- df %>%

filter(endorser_party != "D")

Ok, so there are a number of rows for which the endorsee variable is NA. That is weird. Lets check out how
many cases we have in which the endorsee variable is NA.
table(is.na(df$endorsee))

##
## FALSE TRUE
## 223 782

That is most of our observations! So fivethirtyeight appears to have already listed people it expects to
announce an endorsement before they even did so! We can use filter to create a new data frame that only
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contains observations for which an endorsement actually happened using is.na() (or more specifically the
negation !is.na()).
df_nona <- df %>%

filter(!is.na(endorsee))

Filtering for multiple values at once

Suppose, we wanted to filter all the endorsements that come from states that will take part in Super Tuesday.
Registered Democrats from these states will vote for the Democratic nominee, who will be on the ballot for
the 2020 Presidential Election.

The states that will hold primary elections on this year’s Super Tuesday (March 3, 2020) are Alabama (AL),
Arkansas (AR), California (CA), Colorado (CO), Maine (ME), Massachussets (MA), Minnesota (MN), North
Carolina (NC), Oklahoma (OK), Tennessee (TN), Texas (TX), Utah (UT), Vermont (VT), and Virginia
(VA).
super_tuesday <- c("AL", "AR", "CA", "CO", "ME", "MA", "MN", "NC", "OK", "TN", "TX", "UT", "VT", "VA")
df_super <- df %>%

filter(state %in% super_tuesday)

Wait, what do we need %in% for? Couldn’t we just use ==? Lets use a smaller example to illustrate why this
isn’t the case. Below, lets select only the following states: California (CA) and Texas (TX).
head(df$state)

## [1] "MD" "NY" "CA" "DE" "TX" "CA"
test1 <- df %>%

filter(state %in% c("CA", "TX"))
nrow(test1)

## [1] 132
head(test1$state)

## [1] "CA" "TX" "CA" "CA" "CA" "CA"
test2 <- df %>%

filter(state == c("CA", "TX"))

## Warning in state == c("CA", "TX"): longer object length is not a multiple
## of shorter object length
nrow(test2)

## [1] 61
head(test2$state)

## [1] "CA" "CA" "CA" "CA" "CA" "CA"

What does R do? Well it does a vector matching operation. From the variable df$state ("MD" "NY" "CA"
"DE" "TX" "CA") it test is the first element “CA”, is the second element “TX”, is the third element “CA”,
the fourth element “TX”, and so on. Only if the return for each of these checks is TRUE does it select the
respective row (observation).

So yes, if you want to filter for multiple values at once, you need to use %in%!

Introducting mutate()

We can use the mutate() function to create new variables or change existing ones.
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Suppose we want to rescale the points variable to run from 0 to 1. Since the original variable is scaled from 1
(least valuable endorsement) to 10 (most valuable endorsement; former presidents and vice presidents; current
party leaders), we can create a new variable points_rescaled by dividing the original variable by 10.
table(df$points)

##
## 1 2 3 5 6 8 10
## 404 209 278 33 41 29 11
df_rescaled <- df %>%

dplyr::mutate(points_rescaled = points/10)

Exercise Quick question to check our understanding: What is the difference in the output of the following
two lines of code?

mutate(us_state = state)

select(us_state = state)

Suppose, rather than simply dropping all observations that are part of the Super Tuesday group, I wanted to
add a binary variable that is 1 if the state has a primary on Super Tuesday and 0 if it doesn’t.

Here, we use the ifelse() function that is tremendously helpful in data wrangling exercises. The syntax of
ifelse() is as follows:

ifelse(condition, value if TRUE, value if FALSE).
df_super2 <- df %>%

mutate(super = ifelse(state %in% super_tuesday, 1, 0))

Recoding variables

We can also use mutate() to recode variables. Suppose I only wanted to look at endorsements for candidates
who are still in the race, but it is not updated to include the candidate who most recently dropped out of the
race (Cory Booker). We can use the replace() function inside mutate() to make this change.

The syntax for replace() is similar to that of ifelse():

mutate(variable = replace(variable, condition, value if TRUE))
df_drop <- df %>%

mutate(drop = replace(drop, endorsee == "Cory Booker", 1))

Super-helper case_when()

We can use the case_when() function to use complex logical queries to create new variables. Think of
case_when() as a supercharged ifelse(). To get used to the syntax, let’s use it as an alternative to
ifelse().
df_super_alt <- df %>%

mutate(newvar = case_when(
state %in% super_tuesday ~ 1, #Read: "If state is part of super_tuesday"
T ~ 0 #Read: "In all other cases"

))

OK, that seems a lot more difficult that just using ifelse(). But not so fast, case_when() can do a lot
more. Suppose, we wanted to re-group (i.e. simplify) the position variable, because it has a ton of different
categories.
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table(df$position)

##
## attorney general
## 24
## auditor general
## 1
## auditor of accounts
## 1
## chairman
## 1
## commissioner of agriculture and consumer services
## 1
## commissioner of insurance
## 1
## commissioner of labor and industries
## 1
## commissioner of public lands
## 2
## delegate
## 4
## Democratic caucus chairman
## 2
## DNC chair
## 1
## DNC member
## 404
## Executive Board chairman
## 1
## Executive Board member
## 1
## Former 2020 candidate
## 7
## former DNC chair
## 15
## former U.S. House Democratic whip
## 2
## former U.S. House majority leader
## 1
## former U.S. Senate majority leader
## 3
## general treasurer
## 1
## governor
## 28
## insurance commissioner
## 2
## lieutenant governor
## 24
## majority leader
## 1
## mayor
## 48
## minority floor leader
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## 2
## minority leader
## 51
## past president
## 3
## past presidential nominee
## 3
## past vice president
## 2
## past vice-presidential nominee
## 2
## president
## 14
## president pro tem
## 7
## public auditor
## 1
## representative
## 227
## secretary of state
## 12
## secretary of the commonwealth
## 1
## senator
## 41
## speaker
## 23
## speaker pro tem
## 2
## state auditor
## 8
## state comptroller
## 4
## state controller
## 2
## state treasurer
## 13
## state treasurer and receiver-general
## 1
## superintendent of public instruction
## 4
## U.S. House Democratic whip
## 1
## U.S. House majority leader
## 1
## U.S. House speaker
## 1
## U.S. Senate Democratic whip
## 1
## U.S. Senate minority leader
## 1
df_regroup <- df %>%

mutate(position_redux = case_when(
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position %in% c("past president",
"past vice president") ~ "Former government",

position == "governor" ~ "Governor",
position %in% c("senator", "representative") ~ "Member of Congress",
T ~ "Other"

))
table(df_regroup$position_redux)

##
## Former government Governor Member of Congress
## 5 28 268
## Other
## 704

Putting it all together.

Ok, it is super tedious to always create a new data frame. The power of piping is that we can chain multiple
operations together. This makes our live easier and the code a lot easier to read. You can also use comments
to remind yourself what you are doing and inform others.
df_new <- raw %>%

# Renaming endorser_party variable
# selecting remainding variables minus source variable
dplyr::select(endorse_date = date,

endorser_party = endorser.party,
everything(),
-source) %>%

# Creating Super Tuesday variable
mutate(super = ifelse(state %in% super_tuesday, 1, 0)) %>%

# recoding drop variable
mutate(drop = replace(drop, endorsee == "Cory Booker", 1)) %>%

# Coding alternative position variable
mutate(position_redux = case_when(

position %in% c("past president",
"past vice president") ~ "Former government",

position == "governor" ~ "Governor",
position %in% c("senator", "representative") ~ "Member of Congress",
T ~ "Other"

))

Introducting summarize()

One of the most powerful dplyr features is the summarize() function,1 especially in combination with
group_by().

Let’s compute the average and total number of endorsement points that each candidate got. Note that if the
points variable had missing values, we would need to specify na.rm = TRUE within the mean() and sum()
functions.

1Note that both the British and American English versions of summarise() and summarize() work!
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by_endorsee <- df_new %>%
group_by(endorsee) %>%
summarize(av_pts = mean(points, na.rm = T),

tot_pts = sum(points, na.rm = T))

What is going on with that last row that shows up as NA for the endorsee variable? Remember that there
are a number of observations that are NA because no endorsement has been made (as of 13 January 2020).
Therefore, let’s first drop the values that are NA for the endorsee variable before creating the summarized
data frame.2

by_endorsee <- df_new %>%
filter(!is.na(endorsee)) %>%
group_by(endorsee) %>%
summarize(av_pts = mean(points, na.rm = T),

tot_pts = sum(points, na.rm = T))

Suppose, instead of looking at the points, I wanted to know how many endorsements each candidate has. We
can use the n() function to get a count.
by_endorsee <- df_new %>%

filter(!is.na(endorsee)) %>%
group_by(endorsee) %>%
summarize(av_pts = mean(points, na.rm = T),

tot_pts = sum(points, na.rm = T),
count_endorsement = n()) #counts the number of observations

Grouping by more than one variable

Do endorsements vary between Super Tuesday states and the rest? Let’s find out! To do so, we can simply
group the data by endorsee and by the variable super that we created.
by_e_s <- df_new %>%

filter(!is.na(endorsee)) %>%
group_by(endorsee, super) %>%
summarize(av_pts = mean(points, na.rm = T),

tot_pts = sum(points, na.rm = T),
count_endorsement = n()) #counts the number of observations

Hm, this is pretty hard to see. Let’s visualize it.3

{plot(density(by_e_s$av_pts[by_e_s$super == 0]))
lines(density(by_e_s$av_pts[by_e_s$super == 1]),

col = "red")}

2Of course, we could also drop this variable retroactively.
3This would be a lot easier using ggplot2 by the way. We will cover data visualization with ggplot2 in the next workshop.

Stay tuned!
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Quick note on group_by() + summarize() vs. group_by() + mutate()

Above, we create grouped data summaries. Notice that only the variables we explicitly specify are retained
when first grouping the data and then running summarize().

Sometimes, we want to create grouped variables but retain the remainder of the dataframe. To do so , we
can also use group_by() with mutate(). However, this is not appropriate in all situations. For example, if
we created a count_endorsement variable for each row, someone looking at our dataframe could interpret
this as each candidate having received that many endorsements from a particular endorsee.4

pleasedont <- df_new %>%
filter(!is.na(endorsee)) %>%

group_by(endorsee) %>%
mutate(count_endorsement = n())

Sorting with arrange()

To get an idea of where each candidate stands, let’s reorder the output using arrange().
by_endorsee <- df_new %>%

filter(!is.na(endorsee)) %>%
group_by(endorsee) %>%
summarize(av_pts = mean(points, na.rm = T),

tot_pts = sum(points, na.rm = T),
count_endorsement = n()) %>%

# ordering output
arrange(count_endorsement)

4Not the best example, but you get the point. . .
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To re-order in descending order use - before the variable you want the data frame to be ordered by or desc().
Let’s find out who is the candidate with the most average endorsement points
by_endorsee <- df_new %>%

filter(!is.na(endorsee)) %>%
group_by(endorsee) %>%
summarize(av_pts = mean(points, na.rm = T),

tot_pts = sum(points, na.rm = T),
count_endorsement = n()) %>%

# ordering output
arrange(desc(av_pts)) # - works too but I find it confusing

Among the endorsees, Joe Biden received the most endorsements and has the highest number of “total
endorsement points” per the scale of each endorsement’s relative value generated by Five Thirty Eight.
However, the candidate with the highest value for “average endorsement points” is Michael Bennet, followed
by Amy Klobuchar.

Tie breakers

A number of candidates have the same number of endorsements. We can add a tie breaker by specifying
more than one variable inside arrange().
by_endorsee <- df_new %>%

filter(!is.na(endorsee)) %>%
group_by(endorsee) %>%
summarize(av_pts = mean(points, na.rm = T),

tot_pts = sum(points, na.rm = T),
count_endorsement = n()) %>%

# ordering output
arrange(desc(count_endorsement), desc(av_pts))

Selecting rows using slice()

Suppose, we only wanted to know who the top 10 candidates were in terms of endorsements. We can use the
slice() function for this.
by_endorsee_top10 <- df_new %>%

filter(!is.na(endorsee)) %>%
group_by(endorsee) %>%
summarize(av_pts = mean(points, na.rm = T),

tot_pts = sum(points, na.rm = T),
count_endorsement = n()) %>%

# ordering output
arrange(desc(count_endorsement), desc(av_pts)) %>%

# only the top ten
slice(1:10)

Saving files
Finally, lets save the output of our code. This time, we would like to save it in the .dta format. Remember to
load the foreign() library before saving.
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# write.dta(df_new, "highest_endorsements.dta")
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Working with dates in lubridate

Below, I give you a very brief primer on the lubriate package that makes working with dates much easier.
#install.packages("lubridate")
library(lubridate)

##
## Attaching package: 'lubridate'

## The following object is masked from 'package:base':
##
## date

Lubridate can consolidate different date formats. Take the following as an example. ymd stands for “the input
is of the following order: year, month, day.”
dates <- c("2020-01-17", "2020.01.17", "2020-1-17")
ymd(dates)

## [1] "2020-01-17" "2020-01-17" "2020-01-17"

Of course, lubridate understands other formats as well and translates them into a common ymd format.
dates2 <- c("01-17-2020", "01.17.2020", "1-17-2020")
mdy(dates2)

## [1] "2020-01-17" "2020-01-17" "2020-01-17"

In our dataframe, we have a column for when a candidate dropped out of the race. Lets translate it into a
lubridate date variable (even though it technically is already cleaned; for learning purposes). The items that
failed to parse are NA values.
table(df_new$drop_date)

##
## 2019-08-15 2019-08-21 2019-11-01 2019-12-03 2020-01-02 2020-01-13
## 1 4 1 32 4 22
head(table(df_new$endorse_date))

##
## 01.01.20 01.02.19 01.03.19 01.08.19 01.09.19 02.01.19
## 1 2 2 2 1 1
df_new <- df_new %>%

mutate(endorse_date = dmy(endorse_date),
drop_date = ymd(drop_date))

Now we can extract other variables from the date.
df_new <- df_new %>%

mutate(endorse_year = year(endorse_date),
endorse_month = month(endorse_date))

Lets compute the endorsements per month that candidates dropped out of the race.
df_drop_endorse <- df_new %>%

filter(drop == 1) %>%
group_by(endorse_year, endorse_month) %>%
summarise(count = n())

14



We can also compute the duration in days between the last endorsement and the candidate dropping out of
the race using the interval() function. Notice the use of ungroup() here.
df_drop_duration <- df_new %>%

filter(drop == 1) %>%
group_by(endorsee) %>%
filter(endorse_date == max(endorse_date)) %>%
ungroup() %>%
mutate(dur = interval(endorse_date, drop_date),

dur_days = dur/ddays(1)) %>%
arrange(desc(dur_days))

Exercise How long have candidates that didn’t drop out not received an endorsement today (17 January
2020)?

## # A tibble: 9 x 2
## endorsee dur_days
## <chr> <dbl>
## 1 John Delaney 324
## 2 Michael Bennet 40
## 3 Amy Klobuchar 31
## 4 Tom Steyer 14
## 5 Elizabeth Warren 3
## 6 Joe Biden 3
## 7 Pete Buttigieg 2
## 8 Bernie Sanders 1
## 9 Michael Bloomberg 1

Exercise How many days are you old? lubridate can tell you!

## [1] 12051

What day of the week were you born?
wday(dob, label = T)

## [1] Mon
## Levels: Sun < Mon < Tue < Wed < Thu < Fri < Sat
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Merging data
The data
In R, the package haven allows us to access read and write various data formats. Currently, it supports
Stata, SPSS and SAS files. Value labels from imported data are translated into a new labelled() class,
which preserves the original semantics. In addition to some of the functions that can be used to explore the
dimensions of any data frame, we can also explore the substantive descriptions of variables.

For this exercise, we will be working with data from the Pew Research Center’s American Trends Panel
(ATP), which is a nationally representative panel of randomly selected U.S. adults. First, we will load the
data from the 38th and 39th wave of the panel. The data has been cleaned after downloading from the
original sources and subsetted to only include U.S. citizens and respondents who participated in both surveys.

The topics covered in each wave are as follows:

• Wave 38: Pre-election poll, generations research
• Wave 39: Post-election poll

The Wave 38 data contains the following variables:

• POL1DT_W38: Do you approve or disapprove of the way Donald Trump is handling his job as president?
• VTPLAN: Do you plan to vote in the elections this November?
• F_PARTY_FINAL: Party affiliation

The Wave 39 data contains the following variables:

• POL1DT_W39: Do you approve or disapprove of the way Donald Trump is handling his job as president?
• VTHPPYUS_W39: All in all, are you happy or unhappy with the results of the recent elections that took

place across the United States?
• VOTED_ATP: Which of the following statements best describes you?
• F_PARTY_FINAL: Party affiliation

First, let’s load the data from both waves.
library(haven)
# load datasets
w38.df <- haven::read_dta("ATP_W38.dta")
w39.df <- haven::read_dta("ATP_W39.dta")

Let us take a look at the data sets. Notice that we can see the question below the variable name.
# View(w38.df)

Where does this information come from? We can use the attributes() function to get a better idea.5

attributes(w38.df$VTPLAN_W38)

## $label
## [1] "VTPLAN. Do you plan to vote in the elections this November?"
##
## $format.stata
## [1] "%10.0g"
##
## $class
## [1] "haven_labelled"
##
## $labels
## Yes, I plan to vote ON Election Day

5The “%10.0g” is the state encoding for different variable types, see https://www.stata.com/manuals13/dformat.pdf.
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## 1
## Yes, I plan to vote BEFORE Election Day
## 2
## No, I do not plan to vote
## 3
## Not sure
## 4
## Refused
## 99
attributes(w39.df$VOTED_ATP_W39)

## $label
## [1] "VOTED_ATP. Which of the following statements best describes you?"
##
## $format.stata
## [1] "%10.0g"
##
## $class
## [1] "haven_labelled"
##
## $labels
## I did not vote in the 2018 congressional elections
## 1
## I planned to vote but wasn’t able to
## 2
## I definitely voted in the 2018 congressional elections
## 3
## Refused
## 99
# attributes(w38.df$F_PARTY_FINAL)
# attributes(w38.df$F_IDEO)

Exercise 1 Suppose we would like to investigate differences between Democrats and Republicans in the
Wave 39 data. Add a new variable called party_cat that is coded dem if the respondent is affiliated with the
Democrats, rep if the respondent is affiliated with the Republicans, ind if they are independent, and other
for the remaining cases. Check that you get the same numbers as below by using the table() function.

Bonus points if you figure out how to express this is percentages of the total number of respondents!

##
## dem ind other rep
## 3923 2547 1059 2844

##
## dem ind other rep
## 37.81934 24.55413 10.20920 27.41733

Using dplyr for merging
Luckily, the dplyr package in R contains a number of functions that allow us to merge data in “smarter”
ways.

Suppose, we have two data frames: x (here w38.df) and y (here w39.df). The basic syntax for data merging
with dplyr is the following:

output <- whichjoin(A, B, by = "variable")
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We will focus on the following four join functions:

• full_join(): Join data from x and y upon retaining all rows and values. This is the maximum join
possible. Neither x nor y is the “master.”

• inner_join(): Join only those rows that appear in both x and y. Neither x nor y is the “master.”
• left_join(): Join only those rows from y that appear in x, retaining all data in x. Here, x is the

“master.”
• right_join(): Join only those rows from x that appear in y, retaining all data in y. Here, y is the

“master.”

full_join()

Suppose we wanted to keep the maximum amount of data in our new merged data set. We would use the
full_join() function to merge the Wave 38 and Wave 39 data.

WARNING Do not try to run this on RStudio! The data frame is too big and you will crash your session!!!
# full_wrong <- full_join(w38.df, w39.df, by = "F_PARTY_FINAL")
# nrow(full_wrong)

A couple of things to notice:

1. There are a number of duplicate column names in our data. dplyr automatically added a suffix to
those instances; x for the Wave 38 data (the first data set we passed to the function) and y for the
Wave 39 data (the second data set passed to the function). We will rename these variables later on to
keep track from which data set they originate.

2. We have over 30 million observations even though our original datasets only have approximately 10,000
observations each. Why do you think this is the case? Do you notice something weird about the QKEY
variable?

The reason for the high number of observations is that we asked dplyr to join the data sets based on the
F_PARTY_FINAL variable only. This matches each observation in dataset x to each observation in dataset y
as long as they have the same party affiliation. However, the rows in our data are not uniquely identified
by the F_PARTY_FINAL variable. Since we are working with panel data sets, each observation is uniquely
identified by the variable QKEY to track which respondents participated in multiple waves. We need to pass
this information to the full_join() function to correctly match up the observations in our data.

full_join() and the other join functions from dplyr can identify which columns to match on based on
duplicate column names. However, in our particular case, we run into problems because we have more
duplicate column names that unique identifiers for the data; see the message that R outputs when running the
command without specifying by which variables to merge. Ideology and/or party affiliation per respondent
could have changed across the two waves! We do not want to join based on them!
full_alsowrong <- full_join(w38.df, w39.df)

## Joining, by = c("QKEY", "F_PARTY_FINAL", "F_IDEO")
nrow(full_alsowrong)

## [1] 11508

Before we do the correct full_join(), let’s change the name of variables that are not unique identifiers in
each dataset. To do this, we can use the select() function.
names(w38.df)

## [1] "QKEY" "POL1DT_W38" "VTPLAN_W38" "F_PARTY_FINAL"
## [5] "F_IDEO"
w38.df <- w38.df %>%

dplyr::select(QKEY:VTPLAN_W38,
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F_PARTY_FINAL_W38 = F_PARTY_FINAL,
F_IDEO_W38 = F_IDEO)

names(w38.df)

## [1] "QKEY" "POL1DT_W38" "VTPLAN_W38"
## [4] "F_PARTY_FINAL_W38" "F_IDEO_W38"

Notice that below, we silently drop the party_cat variable by not including it within out select() statement.
w39.df <- w39.df %>%

dplyr::select(QKEY:VOTED_ATP_W39,
F_PARTY_FINAL_W39 = F_PARTY_FINAL,
F_IDEO_W39 = F_IDEO)

names(w39.df)

## [1] "QKEY" "POL1DT_W39" "VTHPPYUS_W39"
## [4] "VOTED_ATP_W39" "F_PARTY_FINAL_W39" "F_IDEO_W39"

Now we are ready to join!
merged_full <- full_join(w38.df, w39.df, by = "QKEY")
names(merged_full)

## [1] "QKEY" "POL1DT_W38" "VTPLAN_W38"
## [4] "F_PARTY_FINAL_W38" "F_IDEO_W38" "POL1DT_W39"
## [7] "VTHPPYUS_W39" "VOTED_ATP_W39" "F_PARTY_FINAL_W39"
## [10] "F_IDEO_W39"
nrow(merged_full)

## [1] 11487

inner_join()

Suppose, instead of retaining as much data as possible, we only wanted to keep data for which we have
observations in both data sets. Note that this merging is only done based on the variables that we specify to
uniquely identify each observation. Please refer to the Data Wrangling Cheat Sheet for methods that will
select based on matching values beyond the unique identifiers (see for example intersect() and setdiff()).
merged_inner <- inner_join(w38.df, w39.df, by = "QKEY")
head(merged_inner)

## # A tibble: 6 x 10
## QKEY POL1DT_W38 VTPLAN_W38 F_PARTY_FINAL_W~ F_IDEO_W38 POL1DT_W39
## <dbl> <dbl+lbl> <dbl+lbl> <dbl+lbl> <dbl+lbl> <dbl+lbl>
## 1 100197 2 [Disapp~ 2 [Yes, I~ 2 [Democrat] 4 [Libera~ 2 [Disapp~
## 2 100260 1 [Approv~ 2 [Yes, I~ 1 [Republican] 1 [Very c~ 1 [Approv~
## 3 100314 1 [Approv~ 1 [Yes, I~ 1 [Republican] 3 [Modera~ 1 [Approv~
## 4 100363 1 [Approv~ 1 [Yes, I~ 2 [Democrat] 4 [Libera~ 1 [Approv~
## 5 100446 2 [Disapp~ 1 [Yes, I~ 2 [Democrat] 4 [Libera~ 2 [Disapp~
## 6 100588 2 [Disapp~ 1 [Yes, I~ 2 [Democrat] 3 [Modera~ 2 [Disapp~
## # ... with 4 more variables: VTHPPYUS_W39 <dbl+lbl>,
## # VOTED_ATP_W39 <dbl+lbl>, F_PARTY_FINAL_W39 <dbl+lbl>,
## # F_IDEO_W39 <dbl+lbl>
nrow(merged_inner)

## [1] 9298
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left_join() and right_join()

Suppose we had an existing master data set and wanted to add data to this master without adding new
rows—just new columns. This could for example be the case if we had a specific time frame that we wanted
to study, and only want to merge data which matches this time frame.

Here, suppose we wanted to make the Wave 38 data our master data set and merge data from the Wave
39 data onto this master. The Wave 39 data took place after the 2018 midterm elections, while Wave 38
contains pre-election data. We are interested in keeping all of the observations from pre-election, and add on
data for pre-election respondents who also participated in Wave 39. We can show that the Wave 38 data and
the merged data frame have the same number of observations (rows).
merged_left <- left_join(w38.df, w39.df, by = c("QKEY"))
nrow(w38.df) == nrow(merged_left)

## [1] TRUE

Exercise 2 How would you achieve the exact same result using the right_join() function?

## [1] TRUE
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Data re-shaping with tidyr

Another important task in data management is data re-shaping. Often, data does not come in the format
that we need for data merging, data visualization, statistical analysis, or vectorized programming. In general,
we want data in the following format:

1. Each variable forms a column.
2. Each observation forms a row6.
3. For panel data, the unit (e.g. country) and time (e.g. year) identifier form columns.

The tidyr package offers two main functions for data reshaping:

• pivot_longer(): Shaping data from wide to long.
• pivot_wider(): Shaping data from long to wide.

Wide versus long data
For wide data formats, each unit’s responses are in a single row. For example:

Country Area Pop1990 Pop1991
A 300 56 58
B 150 40 45

For long data formats, each row denotes the observation of a unit at a given point in time. For example:

Country Year Area Pop
A 1990 300 56
A 1991 300 58
B 1990 150 40
B 1991 150 45

pivot_longer()

We use the pivot_longer() function to reshape data from wide to long. In general, the syntax of the data
is as follows:

new_df <- pivot_longer(old_df, columns to transform, names_to = "name", values_to =
"value")7

We will be working with the merged_inner data set. Suppose instead of having a separate column for the
mutual variables for each wave, we wanted to create a new column called wave that codes the wave of the
survey.

Let’s start with a simple example and first only work with a subset of the merged_inner data frame that
contains the QKEY, POL1DT_W38, and POL1DT_W39 variables. Below, note that since tidyr and dplyr are
sibling packages from the “tidyverse,” we can use them seamlessly in the same pipe (here using group_by(),
summarize(), mutate(), and filter() from dplyr).

6Hadley Wickham (2014, “Tidy Data” in Journal of Statistical Analysis) adds another condition, namely that “Each type of
observational unit forms a table.” We will not go into this here, but I can highly recommend you read Wickham’s piece if you
want to dive deeper into tidying data.

7If we use the function in a pipe, we do not need to specify the old_df parameter. tidyr automatically knows to use the
lastest version of the data frame in the pipe.
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library(tidyr)
names(merged_inner)

## [1] "QKEY" "POL1DT_W38" "VTPLAN_W38"
## [4] "F_PARTY_FINAL_W38" "F_IDEO_W38" "POL1DT_W39"
## [7] "VTHPPYUS_W39" "VOTED_ATP_W39" "F_PARTY_FINAL_W39"
## [10] "F_IDEO_W39"
df_long_small <- merged_inner %>%

dplyr::select(QKEY,
contains("POL1DT")) %>%

pivot_longer(names_to = "wave",
values_to = "trump_approval",
cols = -QKEY) # Everything except the QKEY

# We could have also written cols = c("POL1DT_W38", "POL1DT_W39")

head(df_long_small)

## # A tibble: 6 x 3
## QKEY wave trump_approval
## <dbl> <chr> <dbl+lbl>
## 1 100197 POL1DT_W38 2 [Disapprove]
## 2 100197 POL1DT_W39 2 [Disapprove]
## 3 100260 POL1DT_W38 1 [Approve]
## 4 100260 POL1DT_W39 1 [Approve]
## 5 100314 POL1DT_W38 1 [Approve]
## 6 100314 POL1DT_W39 1 [Approve]

Ok, now that we know how this works, let’s try this with all variables. Unfortunately, R throws an error that
essentially complains because the factor levels (i.e. haven labels) don’t have the same values across variables.
This is a know issue (see https://github.com/tidyverse/haven/issues/477) that will hopefully be fixed by the
haven developing team soon.
# df_long_all <- merged_inner %>%
#
# pivot_longer(names_to = "variable",
# values_to = "value",
# cols = -QKEY)

For now, a workaround would be to change the variable types to factor using haven’s as_factor() function.
Note that you can also use the as_factor() function on a single variable, rather than on an entire dataframe.
df_long_all <- as_factor(merged_inner) %>%

pivot_longer(names_to = "variable",
values_to = "value",
cols = -QKEY)

Ok, that is cool, but it doesn’t really help us all that much because the original variable names aren’t terribly
informative. Below, we try this again, selecting only the variables that are common across both waves. First,
we rename a few variables to make our life easier later on.8

8Once you learn regular expressions and string operations in a later session, this will be easier.
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names(merged_inner)

## [1] "QKEY" "POL1DT_W38" "VTPLAN_W38"
## [4] "F_PARTY_FINAL_W38" "F_IDEO_W38" "POL1DT_W39"
## [7] "VTHPPYUS_W39" "VOTED_ATP_W39" "F_PARTY_FINAL_W39"
## [10] "F_IDEO_W39"
df_long <- as_factor(merged_inner) %>%

dplyr::select(QKEY,
trump_w38 = POL1DT_W38,
trump_w39 = POL1DT_W39,
ideo_w38 = F_IDEO_W38,
ideo_w39 = F_IDEO_W39,
party_w38 = F_PARTY_FINAL_W38,
party_w39 = F_PARTY_FINAL_W39) %>%

pivot_longer(names_to = "variable",
values_to = "value",
cols = contains("trump"))

## Please inspect the output to reason about what happened above!

# Lets select all variables using a combination of multiple contains.
# Note that this is for instructional purposes only,
# in reality we would probably again use -QKEY
df_long <- as_factor(merged_inner) %>%

dplyr::select(QKEY,
trump_w38 = POL1DT_W38,
trump_w39 = POL1DT_W39,
ideo_w38 = F_IDEO_W38,
ideo_w39 = F_IDEO_W39,
party_w38 = F_PARTY_FINAL_W38,
party_w39 = F_PARTY_FINAL_W39) %>%

pivot_longer(names_to = "variable",
values_to = "value",
cols = c(contains("trump"),

contains("ideo"),
contains("par")))

Introducing separate()

Why did renaming the variables make our life easier? Well, the separate() function is awsome for data
wrangling tasks, because it allows us to separate the variable column into two, that way we have a separate
time-related column.
df_long <- as_factor(merged_inner) %>%

dplyr::select(QKEY,
trump_38 = POL1DT_W38,
trump_39 = POL1DT_W39,
ideo_38 = F_IDEO_W38,
ideo_39 = F_IDEO_W39,
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party_38 = F_PARTY_FINAL_W38,
party_39 = F_PARTY_FINAL_W39) %>%

pivot_longer(names_to = "variable",
values_to = "value",
cols = -QKEY) %>%

separate(variable, c("var", "wave"))

It would be interesting to find out to what extent people changed their stated values after the election? Let’s
drop the people who refused to answer. Also, we need to change the wave variable to numeric. We then use
the lag() function to create a lagged variable from value.
df_change <- df_long %>%

mutate(wave = as.numeric(wave)) %>%
group_by(QKEY, var) %>%
mutate(value_lag = lag(value)) %>%
ungroup() %>%
mutate(change = ifelse(value != value_lag, 1, 0))

# Only 0.06% of answers changed
sum(df_change$change, na.rm = T)/length(unique(df_change$QKEY))

## [1] 0.06065821

pivot_wider()

Suppose we wanted to revert our operation (or generall shape data from a long to a wide format), we can use
tidyr’s pivot_wider() function. The syntax is similar to pivot_longer().

new_df <- spread(old_df, names_from = key, values_from = value),

where key refers to the colum which contains the values that are to be converted to column names and value
specifies the column that contains the values which is to be stored in the newly created columns.

Below, we semi-revert the creation of a single column containing the variable types and a single column
containing our variable values.
names(df_long)

## [1] "QKEY" "var" "wave" "value"
df_wide <- df_long %>%

pivot_wider(names_from = var,
values_from = value) %>%

#Cleaning issues w/ levels
droplevels() # drops empty factor levels

We can use this format to compute comparisons of Trump approval across waves. Notice the use of ungroup()
below.
df_approval1 <- df_wide %>%

filter(trump != "Refused") %>%
group_by(wave, trump) %>%
summarise(count = n()) %>%

# Creating percentage

24



ungroup() %>%
group_by(wave) %>%
mutate(perc = 100/sum(count)*count)

df_approval1

## # A tibble: 4 x 4
## # Groups: wave [2]
## wave trump count perc
## <chr> <fct> <int> <dbl>
## 1 38 Approve 3310 36.1
## 2 38 Disapprove 5871 63.9
## 3 39 Approve 3423 37.1
## 4 39 Disapprove 5797 62.9

Bonus We can also use this format to compare pre- and post-election approval rates about Donald Trump
by political ideology among the panel respondents (Note: without applying survey weights, this is not a
representative estimate). Approval ratings have gone up across the ideological spectrum.
df_approval2 <- df_wide %>%

filter(trump != "Refused",
ideo != "Refused") %>%

group_by(wave, trump, ideo) %>%
summarise(count = n()) %>%

# Creating percentage
# Here, the baseline is all people in a certain ideology group per wave
ungroup() %>%
group_by(wave, ideo) %>%
mutate(perc = 100/sum(count)*count) %>%
filter(trump == "Approve")

library(ggplot2)
ggplot(df_approval2,

aes(x = ideo, y = perc, fill = wave)) +
geom_bar(stat = "identity", position = position_dodge())
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We can also fully revert the operation by specifying both the wave and the the value colum in the names_from
parameter.
names(df_long)

## [1] "QKEY" "var" "wave" "value"
df_wider <- df_long %>%

pivot_wider(names_from = c(var, wave),
values_from = value)

Sources
Bacoffe, A. and Silver, N., 2019. The 2020 Endorsement Primary. FiveThirtyEight. Retrieved January 13,
2020.

Pew Research Center. 2015. Building Pew Research Center’s American Trends Panel, Technical Report,
Washington D.C. Available at http://pewrsr.ch/1Jo4nKE.
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