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Plan for this workshop series

This workshop series is geared toward learning basic data management in R. This includes tasks like
manipulating variables, creating new variables, subsetting data, reshaping data, and merging. We will also
cover some introductory regular expression applications. In this workshop series we will cover only basic
visualization methods in R. Aspects like data analysis, web-scraping, or higher-level statistical programming
are not covered.

Scheduled sessions:

1. Introduction to R (working directories, arithmetic, logical operators, basic indexing, data types,
basic functions such as sum, mean, names, seq, rep, installing packages, reading and writing data,
dealing with missing data, data frames, indexing on data frames, getting an overview of the data with
numerical and graphical summaries).

2. Modern data management in R using the tidyverse (dplyr, tidyr, readr, and lubridate
packages)

Getting started in R

R is a programming language for statistical computing and data visualization, that is a open source al-
ternative to commercial statistical packages such as Stata or SPSS. R is maintained and developed by a
vibrant community of programmers and statisticians and offers many user-written packages to extend basic
functionality.

In this workshop, we will be using RStudio Cloud as an online environment to write R code.

Setting up RStudio Cloud

1. After clicking the link sent in the rstudio.cloud invite email, you will be prompted to create an account.

2. You will then be redirected to your workspace. In the sidebar, you will see a link for “SCRIPTS/Hertie
Data Science Workshop Series” project.

3. Before you work on any project, you need to first save a permanent copy of a specific project or session
to save your individual changes.

Getting Help

The key to learning R is: Google! This workshop will give you an overview over basic R functions, but to
really learn R you will have to actively use it yourself, trouble shoot, ask questions, and google! The R mailing
list and other help pages such as http://stackoverflow.com offer a rich archive of questions and answers by
the R community. For example, if you google “recode data in r” you will find a variety of useful websites
explaining how to do this on the first page of the search results. Also, don’t be surprised if you find a variety
of different ways to execute the same task.

*Instructor, Hertie School/SCRIPTS, anders@hertie-school.org.
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RStudio also has a useful help menu. In addition, you can get information on any function or integrated data
set in R through the console, for example:

?plot

In addition, there are a lot of free R comprehensive guides, such as Quick-R at http://www.statmethods.net
or the R cookbook at http://www.cookbook-r.com.

Executing a line of code

To execute a single line of code. In RStudio, with the curser in the line you want R to execute,

1. click the “Run” button at the top of the editor pane, OR
2. press command + return (on macOS) or Crtl + Enter (on Windows).

To execute multiple lines of code at once, highlight the respective portion of the code and then run it using
one of the operations above.

Arithmetic in R

You can use R as a calculator!

Operator Example

Addition + 2+4
Subtraction - 2-4
Multiplication — * 2x4
Division / 4/2
Exponentiation = 274
Square Root sqrt () sqrt (144)
Absolute Value abs() abs(-4)

4x9

## [1] 36
sqrt (144)

## [1]1 12

Just like any regular calculator, you have to pay attention to the order of operations! Example:
6 * 8 - sqrt(7) + abs(-10)

## [1] 55.35425
6 * (8 - sqrt(7)) + abs(-10)

## [1] 42.12549
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Logical operators

Operator
Less than <
Less than or equal to <=
Greater than >

Greater than or equal to >=
Exactly equal to ==
Not equal to 1=

Not x Ix
XOory x|y
xand y x&y

Logical operators are incredibly helpful for any type of exploratory analysis, data cleaning and/or visualization
task.

4 > 2

## [1] TRUE
4 <= 2

## [1] FALSE

Objects in R

Assigning values to objects

R stores information as an object. You can name objects whatever you like. Just remember to not use names
that are reserved for build-in functions or functions in the packages you use, such as sum, mean, or abs. Most
of the time, R will let you use these as names, but it leads to confusion in your code.

A few things to remember

e Do not use special characters such as $ or %. Common symbols that are used in variable names include
. or _.

o Remember that R is case sensitive.

e To assign values to objects, we use the assignment operator <-. Sometimes you will also see = as the
assignment operator. This is a matter of preference and subject to debate among R programmers.
Personally, I use <- to assign values to objects and = within functions.

o The # symbol is used for commenting and demarcation. Any code following # will not be executed.

Below, R stores the result of the calculation in an object named result. We can access the value by referring
to the object name.

result <- 5/3
result

## [1] 1.666667

If we assign a different value to the object, the value of the object will be changed.

result <- 5-3
result

## [1] 2



Vectors

R can deal with a variety of data types, including vectors, scalars, matrices, data frames, and lists. First, we
focus on vectors.

A vector is one of the simplest type of data you can work with in R. “A vector or a one-dimensional array
simply represents a collection of information stored in a specific order” (Imai 2017: 14). It is essentially a list
of data of a single type (either numerical, character, or logical).

To create a vector, we use the function c() (‘concatenate'') to combine separate data points. The
general format for creating a vector in R is as follows:name_ of vector <- c(“what you want to
put into the vector”)*

Suppose, we have data on the population in millions for the five most populous countries in 2016. The data
come from the World Bank.

popl <- c(1379, 1324, 323, 261, 208)
popl

## [1] 1379 1324 323 261 208

We can use the function ¢ () to combine two vectors. Suppose we had data on 5 additional countries.

pop2 <- c(194, 187, 161, 142, 127)
pop <- c(popl, pop2)
pop

## [1] 1379 1324 323 261 208 194 187 161 142 127

Variable types
There are four main variable types you should be familiar with:

e Numerical: Any number. Integer is a numerical variable without any decimals.

o Character: This is what Stata (and other programming languages such as Python) calls a string. We
typically store any alphanumeric data that is not ordered as a character vector.

e Logical: A collection of TRUE and FALSE values.

e Factor: Think about it as an ordinal variable, i.e. an ordered categorical variable.

First, lets check which variable type our population data were stored in. The output below tells us that the
object pop is of class numeric, and has the dimensions [1:10], that is 10 elements in one dimension.

str (pop)

## num [1:10] 1379 1324 323 261 208 ...

Suppose, we wanted to add information on the country names. We can enter these data in character format.
To save time, we will only do this for the five most populous countries.

cname <- c("CHN", "IND", "USA", "IDN", "BRA")

str(cname)

## chr [1:5] "CHN" "IND" "USA" "IDN" "BRA"

Now, lets code a logical variable that shows whether the country is in Asia or not. Note that R recognizes
both TRUE and T (and FALSE and F) as logical values.

asia <- c(TRUE, TRUE, F, T, F)
str(asia)

## logi [1:5] TRUE TRUE FALSE TRUE FALSE



Lastly, we define a factor variable for the regime type of a country in 2016. This variable can take on one
of four values (based on data from the Economist Intelligence Unit): Full Democracy, Flawed Democracy,
Hybrid Regimes, and Autocracy. Note that empirically, we don’t have a “hybrid category” here. We could
define an empty factor level, but we will skip this step here.

regime <- c("Autocracy", "FlawedDem", "FullDem", "FlawedDem", "FlawedDem")
regime <- as.factor(regime)
str(regime)

## Factor w/ 3 levels "Autocracy","FlawedDem",..: 1 2 3 2 2

Data types are important! R will not perform certain operations if you don’t get the variable type right. The
good news is that we can switch between data types. This can sometimes be tricky, especially when you are
switching from a factor to a numerical type!. We won’t go into this too much here; just remember: Google is
your friend!

Let’s convert the factor variable regime into a character. Also, for practice, lets convert the asia variable to
character and back to logical.

regime <- as.character(regime)
str(regime)

## chr [1:5] "Autocracy" "FlawedDem" "FullDem" "FlawedDem" "FlawedDem"

asia <- as.character(asia)
str(asia)

## chr [1:5] "TRUE" "TRUE" "FALSE" "TRUE" "FALSE"

asia <- as.logical(asia)
str(asia)

## logi [1:5] TRUE TRUE FALSE TRUE FALSE
Exercise 1: Why won’t R let us do the following?
no_good <- (a,b,c)

no_good_either <- c(one, two, three)

Exercise 2: What’s the difference? (Bonus: What do you think is the class of the output vector?)
diff <-c(TRUE,"TRUE")

Exercise 3: What is the class of the following vector?

vec <- C("l", ||2||’ ||3||)

Vector operations

You can do a variety of things like have R print out particular values or ranges of values in a vector, replace
values, add additional values, etc. We will not get into all of these operations today, but be aware that (for
all practical purposes) if you can think of a vector manipulation operation, R can probably do it.

We can do arithmatic operations on vectors! Let’s use the vector of population counts we created earlier and
double it.

popl

## [1] 1379 1324 323 261 208

1Sometimes you have to do a work around, like switching to a character first, and then converting the character to numeric.
You can concatenate commands: myvar <- as.numeric(as.character(myvar)).



popl_double <- popl * 2
popl_double

## [1] 2758 2648 646 522 416

Exercise 4: What do you think this will do?

popl + pop2

Exercise 5: And this?
pop_c <- c(popl, pop2)

Functions

There are a number of special functions that operate on vectors and allow us to compute measures of location

and dispersion of our data.

Function

Returns the minimum of the values or object.
Returns the maximum of the values or object.
Returns the sum of the values or object.
Returns the length of the values or object.
Returns the average of the values or object.
Returns the median of the values or object.
Returns the varianve of the values or object.
Returns the varianve of the values or object.

min()
max ()
sum()
length()
mean ()
median()
var ()
sd ()

min (pop)

## [1] 127

max (pop)

## [1] 1379

mean (pop)

## [1] 430.6

Exercise 6: Using functions in R, how else could we compute the mean population value?

## [1] 430.6

Accessing elements of vectors

There are many ways to access elements that are stored in an object. Here, we will focus on a method called
indexing, using square brackets as an operator.

Below, we use square brackets and the index 1 to access the first element of the top 5 population vector and
the corresponding country name vector.

popll[1]

## [1]1 1379

cname [1]

## [1] "CHN"



We can use indexing to access multiple elements of a vector. For example, below we use indexing to implicitly
print the second and fifth elements of the population and the country name vectors, respectively.

poplc(2,5)]

## [1] 1324 208
cname[c(2,5)]

## [1] "IND" "BRA"

We can assign the first element of the population vector to a new object called first.

first <- popl[1]

Below, we make a copy of the country name vector and delete the last element. Note, that we can use the

length() function to achieve the highest level of generalizability in our code. Using length(), we do not
need to know the index of the last element of out vector to drop the last element.

cname_copy <- cname
## Option 1: Dropping the 5th element
cname_copy [-5]

## [1] IICHNII IIINDII IIUSAII IIIDNII

## Option 2 (for gemeralizability): Getting the last element and dropping it.
length(cname_copy)

## [1] 5
cname_copy [-length(cname_copy)]

## [1] IICHNII IIINDII IIUSAII IIIDNII

Indexing can be used to alter values in a vector. Suppose, we notice that we wrongly entered the second
element of the regime type vector (or the regime type changed).

regime

## [1] "Autocracy" "FlawedDem" "FullDem" "FlawedDem" "FlawedDem"
regime[2] <- "FullDem"

regime

## [1] "Autocracy" "FullDem"  "FullDem"  "FlawedDem" "FlawedDem"

Exercise 7: We made even more mistakes when entering the data! We want to subtract 10 from the third
and fifth element of the top 5 population vector. How would you do it?

More functions

The myriad of functions that are either built-in to base R or parts of user-written packages are the greatest
stength of R. For most applications we encounter in our daily programming practice, R already has a function,
or someone smart wrote one. Below, we introduce a few additional helpful functions from base R.

Function
seq() Returns sequence from inputl to input2 by input3.
rep() Repeats inputl input2 number of times.

names() Returns the names (labels) of objects.
which() Returns the index of objects.




Let’s create a vector of indices for our top 5 population data.
cindex <- seq(from = 1, to = length(popl), by = 1)

cindex

## [11 12345

Suppose we wanted to only print a sequence of even numbers between 2 and 10. We can do so by adjusting
the by operator.

seq(2, 10, 2)

## [1] 2 4 6 8 10

We can use the rep() function to repeat data.

rep(30, 5)

## [1] 30 30 30 30 30

Suppose, we wanted to record whether we had completed the data collection process for the top 10 most
populous countries. First, suppose we completed the process on every second country.

completed <- rep(c("yes","no"), 5)
completed

## [1] Ilyesll Ilnoll llyesll llnoll Ilyesll Ilnoll llyesll llnoll yesll Ilnoll

Now suppose that we have completed the data collection process for the first 5 countries, but not the latter 5
countries (we don’t have their names, location, or regime type yet).

completed2 <- rep(c("yes","no"), each = 5)
completed2
## [1] llyesll Ilyesll llyesll llyesll llyesll Ilnoll llnoll llnoll Ilno" Ilnoll

We can give our data informative labels. Let’s use the country names vector as labels for our top 5 population
vector.

names (pop1)

## NULL

cname

## [1] IICHNII IIINDII IIUSAII IIIDNII llBRAlI
names (popl) <- cname

names (pop1)

## [1] "CHN" IIINDII "USA" nIDNu IIBRAII
popl

## CHN IND USA 1IDN BRA

## 1379 1324 323 261 208

We can use labels to access data using indexing and logical operators. Suppose, we wanted to access the
population count for Brazil in our top 5 population data.

popl[names(popl) == "BRA"]

## BRA
## 208



Exercise 9 Access all top 5 population ratings that are greater or equal than the mean value of population
ratings.

## [1] 699

## CHN 1IND
## 1379 1324

Exercise 10 Access all top 5 population ratings that are less than the population of the most populous
country, but not the US.

## IND IDN BRA
## 1324 261 208

Operating on multiple vectors simultaneously

We did not work with data frames yet, but remember that our data input is ordered. The first element of the
popl vector corresponds with the first element of the cname, regime, and asia vectors. We can use this to
run more sophisticated queries on our data.

Suppose, we wanted to know the regime type of Indonesia. Given that our vectors are ordered, we can use
indexing to extract the data. First, lets see what happens if we run a simple logical query.

cname == "IDN"

## [1] FALSE FALSE FALSE TRUE FALSE

regime [cname == "IDN"]

## [1] "FlawedDem"

We can also use the which() function that returns the index of the vector element.

which(cname == "IDN")

## [1] 4
regime [which(cname == "IDN")]
## [1] "FlawedDem"

Using logical statements, we can run more complex queries. Below, we print the population count for all
Asian countries within the top 5 most populous countries that are not autocracies.

popllasia == T & regime != "Autocracy"]
## IND 1IDN
## 1324 261



Working with data frames in R

Using packages

So far, we have only used functions that are already built into R. One of the greatest strengths of R is its
massive collection of user-written packages that contain task-specific functions. The official repository for R
packages, CRAN, currently records 15365 packages,? with many more under development.

If a package is available on CRAN, you can install it in two ways.

1. In RStudio, click on the “Install” button under the “Packages” tab, enter the package name and desired
location on your computer (in most cases, do not change the default), and click “Install”. OR

2. Run install.packages("packagename"), where packagename should be replaced with the name of
the desired package.

Below, we will use use the foreign package to import a .csv file. To make the foreign package available for
use, install it and then use the library() command to load it. While packages need to be installed only
once, the library() command needs to be run every time you want to use a particular package.?

#install.packages("foreign") #alternatively use "Install"” button
library(foreign)

Importing data

Most data formats we commonly use are not native to R and need to be imported. Luckily, there is a variety
of packages available to import just about any non-native format. One of the essential libraries is called
foreign and includes functions to import .csv, .dta (Stata), .dat, ,.sav (SPSS), etc.

In this example, we will use a subset of data from the Armed Conflict Location & Event Data Project
(ACLED), which offers real-time data and analysis on political violence and protests around the world. The
ACLED_countries.csv dataset includes the count of riot and protest events from January 2000 to December
2019 for many countries.*

Below, we read the data using the read.csv() command.’

mydata <- read.csv("ACLED_countries.csv",
stringsAsFactors = F)

Dimensions of a data frame

Let’s find out what these data look like. First, use the str() function to explore the variable names and
which data class they are stored in. Note: int stands for integer and is a special case of the class numeric.

str(mydata)

## 'data.frame': 103 obs. of 5 variables:

## $ country : chr "Afghanistan" "Albania" "Algeria" "Angola"

## $ region : chr "Southern Asia" "Europe" "Northern Africa" "Middle Africa"
## $ nconflicts : int 40765 582 7362 1108 3118 12627 1861 16802 293 215

## ¢ nconflict_no_fatalities: int 23946 581 5321 728 3110 12578 1846 13114 293 165

## § fatalities : int 119973 1 8451 13788 8 59 22 4640 0 114 ...

2https://cran.r-project.org/web/packages, .

3Full dislosure: On many machines, the foreign package is pre-installed. We install it above for practice purposes.

4ACLED uses the following definition: “A protest describes a non-violent, group public demonstration, often against a
government institution. Rioting is a violent form of demonstration,” see Raleigh, C. and C. Dowd (2015): Armed Conflict
Location and Event Data Project (ACLED) Codebook.)

5When running this example on your own machine, not RStudio Cloud, you need to either specify the complete file name or
change your working directory using setwd() to the folder in which you saved the data. See the bottom of this script for more
info.
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If we are only interested in what the variables are called, we can use the names () function.

names (mydata)

## [1] "country" "region"
## [3] "nconflicts" "nconflict_no_fatalities"
## [5] "fatalities"

We can alter the names of vectors by using the names () function and indexing. Because data frames are
essentially just combinations of vectors, we can do the same for variable names inside data frames. Suppose
we want to change the variable nconflicts.

names (mydata) [3] <- "nconflict"
names (mydata)

## [1] "country" "region"
## [3] "nconflict" "nconflict_no_fatalities"
## [5] "fatalities"

We can use the summary () function to get a first look at the data.

summary (mydata)

#it country region nconflict

## Length:103 Length:103 Min. : 1.0
## Class :character Class :character 1st Qu.: 315.5
## Mode :character Mode :character Median : 1250.0
## Mean : 6216.3
## 3rd Qu.: 5993.5
## Max. :70734.0
## nconflict_no_fatalities fatalities

## Min. : 1 Min. : 0.0

## 1st Qu.: 289 1st Qu.: 17.5

## Median : 1037 Median : 236.0

## Mean 1 4667 Mean : 9543.3

## 3rd Qu.: 4536 3rd Qu.: 7020.0

## Max. 163665 Max. :119973.0

A data frame has two dimensions: rows and columns.

nrow(mydata) # Number of rows

## [1] 103

ncol(mydata) # Number of columns

## [11 5

dim(mydata) # Rows first then columns.

## [1] 103 5

Accessing elements of a data frame

As a rule, whenever we use two-dimensional indexing in R, the order is: [row, column]. To access the first
row of the data frame, we specify the row we want to see and leave the column slot following the comma
empty.

mydatal[1l, ]

## country region nconflict nconflict_no_fatalities fatalities
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## 1 Afghanistan Southern Asia 40765 23946 119973

We can use the concatenate function c() to access multiple rows (or columns) at once. Below we print out
the first and second row of the dataframe.

mydatalc(1,2), ]

## country region nconflict nconflict_no_fatalities fatalities
## 1 Afghanistan Southern Asia 40765 23946 119973
# 2 Albania Europe 582 581 1

We can also access a range of rows by separating the minimum and maximum value with a :. Below we print
out the first five rows of the dataframe.

mydatal[1:5,]

## country region nconflict nconflict_no_fatalities
## 1 Afghanistan Southern Asia 40765 23946
## 2 Albania Europe 582 581
## 3 Algeria Northern Africa 7362 5321
## 4 Angola Middle Africa 1108 728
## 5 Armenia Caucasus and Central Asia 3118 3110
## fatalities
## 1 119973
## 2 1
## 3 8451
## 4 13788
## 5 8

If we try to access a data point that is out of bounds, R returns the value NULL.
mydatal[3,7]

## NULL

Exercise 1 Access the element of the dataframe mydata that is stored in row 1, column 1.
## [1] "Afghanistan"

Exercise 2 Access the element of the data frame mydata that is stored in column 3, row 100.

## [1] 503

The $ operator

The $ operator in R is used to specify a variable within a data frame. This is an alternative to indexing.

mydata$nconflict

## [1] 40765 582 7362 1108 3118 12627 1861 16802 293 215 459
#  [12] 52 765 2105 7760 1919 2621 4625 912 411 312 14519
##  [23] 112 10260 50 191 190 5122 215 197 1446 858 1312
##  [34] 1121 151 67561 3371 5708 22354 1580 1838 491 374 6427
## [45] 289 39 319 41 2956 83 1294 8857 1365 512 384
## [56] 3193 598 444 213 2177 1250 9070 682 5143 971 15011

##  [67] 275 9 54496 6568 9690 5 243 1134 3734 370 6096
##  [78] 963 1275 1079 29667 11667 6227 2 3855 12528 70734 68
## [89] 782 7420 321 5756 1 10334 21 4866 30131 4 102

## [100] 503 45298 1148 5891
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table() function

The table() function can be used to tabularize one or more variables. For example, lets find out how many
observations (i.e. individual countries) we have per region.

table (mydata$region)

##

## Caucasus and Central Asia Eastern Africa
## 8 13
## Europe Middle Africa
## 15 8
## Middle East Northern Africa
## 15 7
#i# South-Eastern Asia Southern Africa
## 8 8
## Southern Asia Western Africa
## 6 15

Using logical operations, we can create more complex tabularizations. For example, below, we show how
many countries have above average number of conflict events per region.

summary (mydata$nconflict)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.0 315.5 1250.0 6216.3 5993.5 70734.0

table (mydata$region, mydata$nconflict > mean(mydata$nconflict))

##

## FALSE TRUE
## Caucasus and Central Asia 7 1
## Eastern Africa 9 4
##  Europe 14 1
## Middle Africa 7 1
## Middle East 10 5
## Northern Africa 3 4
## South-Eastern Asia 5 3
## Southern Africa 7 1
## Southern Asia 2 4
## Western Africa 14 1

Exercise 3: How would you access all elements of the variable country using indexing rather than the $
operator?

## [1] "Afghanistan" "Albania" "Algeria" "Angola" "Armenia"
## [6] "Azerbaijan"

## [1] "Afghanistan" "Albania" "Algeria" "Angola" "Armenia"
## [6] "Azerbaijan"

Exercise 4: How would you find the maximum value for number of events using the $ operator?
## [1] 70734

Exercise 5: Print the country that corresponds to the maximum world population value using the $ operator
and indexing!

## [1] "Syria"
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Exercise 6: Print out every second element from the variable country using indexing methods and the
sequence function seq().

## [1] "Afghanistan" "Algeria"

## [3] "Armenia" "Bahrain"

## [5] "Belarus" "Bosnia and Herzegovina"
NAs in R

NA is how R denotes missing values. For certain functions, NAs cause problems.
vec <- c(4, 1, 2, NA, 3)

mean(vec) #Result is NA!

## [1] NA

sum(vec) #Result is NA!

## [1] NA
We can tell R to remove the NA and execute the function on the remainder of the data.

mean(vec, na.rm = T)

## [1] 2.5

sum(vec, na.rm = T)

## [1]1 10

Adding observations

First, lets add another observation to the data. Suppose we wanted to add an observation for Germany,
which will be a missing value. We can use the same operations we used for vectors to add data. Here, we will
use the rbind () function to do so. rbind() stands for “row bind.” Save the output in a new data frame!

obs <- c("Germany", "Europe", NA, NA, NA)
mydata_new <- rbind(mydata, obs)
dim(mydata_new)

## [1] 104 5

Adding variables

We can also create new variables that use information from the existing data. If we know the number of
conflict events without fatalities by country, we can calculate the number of conflict events with fatalities
to generate the variable nconflict_fatalities. By using the $ operator, we can directly assign the new
variable to the data frame mydata_new.

mydata$nconflict_fatalities <- mydata$nconflict - mydata$nconflict_no_fatalities
head(mydata, 3) #prints out the first 3 rows of the data frame

## country region nconflict nconflict_no_fatalities fatalities
## 1 Afghanistan  Southern Asia 40765 23946 119973
## 2 Albania Europe 582 581 1
## 3 Algeria Northern Africa 7362 5321 8451
## nconflict_fatalities
## 1 16819
## 2 1
## 3 2041
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We could also compute the average number of fatalities per conflict, computed as the sum of fatalities
(fatalities variable) divided by the number of conflicts (nconflict variable).

mydata$av_fatalities <- mydata$fatalities/mydata$nconflict

Subsetting data

Suppose we want to figure out which country in Northern Africa has the highest number of riot and protest
events. We can figure this out by first subsetting our dataset to only include countries in the region, then
looking up the maximum value for nconflict. Below, we assign the output to a new object called mydata_na.

mydata_na <- mydatal[mydata$region == "Northern Africa",]
max (mydata_na$nconflict)

## [1] 12528

mydata_na$country[mydata_na$nconflict == max(mydata_na$nconflict)]

## [1] "Sudan"

Saving data
Suppose we wanted to save this newly created data frame. We have multiple options to do so. If we wanted
to save it as a native .RData format, we would run the following command.

# Make sure you specified the right working directory!
# save(mydata, file = "mydata_new.RData")

Most of the time, however, we would want to save our data in formats that can be read by other programs as
well. .csv is an obvious choice.

# write.csv(mydata_new, file = "mydata_new.csv")
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(Very basic) data visualization

Today, we will be covering some basics of data visualization in R using the native plotting functions. For more
advanced data visualization functions, see the ggplot2 package and the related material for a three-session
workshop on advanced data visualization https://github.com/thereseanders/workshop-dataviz-fsu.

Basic graphical summaries of data

Type Operator
Histogram hist(Q
Boxplot boxplot ()

Kernel density plot plot(density())
Basic scatterplot plot O

Boxplot of population density

We can get an overview of the number of conflict events per country using the boxplot () function. The
distribution appears to be highly skewed.

boxplot (mydata$fatalities)
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Suppose we wanted to know whether there are on average more fatalities in countries with a higher overall
number of conflicts. Let’s first look at the distribution of number of conflicts.

summary (mydata$nconflict)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
#i 1.0 315.5 1250.0 6216.3 5993.5 70734.0

Create a new dummy (binary) variable that codes whether a state has a relatively high number of conflicts
(greater than the median) using the ifelse() function. ifelse() has the following general syntax:

ifelse(condition, value if TRUE, value if FALSE).

median(mydata$nconflict)

## [1] 1250
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mydata$nconflict_high <- ifelse(mydata$nconflict > median(mydata$nconflict), 1, 0)
head (mydata$nconflict_high)

## [11 101011
table(mydata$nconflict_high) # We split the observations (almost) sezactly in half.

##
## 0 1
## 52 51

We can display two indicators in the same boxplot. We can use this feature to answer the question whether
states with more conflict events on average see more fatalities (i.e. whether conflicts are not just more
numerous but also deadlier).

boxplot (mydata$av_fatalities ~ mydata$nconflict_high)
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mydata$nconflict_high

Suppose we wanted to know which region in Africa sees the most fatalities in riots or protests. Below we
introduce the %in¥% operator to subset to a set of values.

table (mydata$region)

##

## Caucasus and Central Asia Eastern Africa
## 8 13
## Europe Middle Africa
## 15 8
## Middle East Northern Africa
## 15 7
## South-Eastern Asia Southern Africa
## 8 8
## Southern Asia Western Africa
## 6 15

africa <- c("Eastern Africa",
"Middle Africa",
"Northern Africa",
"Southern Africa",
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"Western Africa")
boxplot (mydata$fatalities[mydata$region %in), africa] ~ mydata$region[mydata$region %in) africal,
cex.axis = 0.6)
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mydata$fatalities[mydata$region %in% africa]

Eastern Africa Middle Africa Northern Africa Southern Africa Western Africa
mydata$region[mydata$region %in% africa]

Histogram of number of conflict events
hist (mydata$nconflict, breaks = 100)

Histogram of mydata$nconflict
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Density plot of fatalities
plot(density(mydata$fatalities))

density.default(x = mydata$fatalities)
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Basic scatter plots

Does the number of fatalities vary with the number of overall conflict events?

plot(mydata$nconflict, mydata$fatalities)
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This is really hard to see. We could log-transform both variables to make the relationship clearer. The
distribution of the log-transformed variables are less skewed and closer to a normal distribution. Not that
logging the variable will drop 8 observations in which the number of protests/riots without fatalities is zero.
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length(mydata$nconflict [mydata$nconflict == 0])

## [1] O
length(mydata$fatalities[mydata$fatalities == 0])

## [1] 8
plot(density(log(mydata$nconflict)))

density.default(x = log(mydata$nconflict))
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plot(density(log(mydata$fatalities)))

density.default(x = log(mydata$fatalities))
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plot(log(mydata$nconflict), log(mydata$fatalities))
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Basic graphic options

Aside from arguably not being very informative, the plot above is not very pretty. Lets give it titles, use
color and shapes!

plot(mydata$fatalities, mydata$nconflict,
main = "ACLED (2000-2019)", #Adding a main title.
xlab = "Fatalities", #A4dding a z-azis title.
ylab = "Number of Conflicts", #Adding a y-axis title.
col = "tomato", #Changing the color of the data points.
pch = 18) #Changing the shape

ACLED (2000-2019)
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Yeah, ok. Its not much prettier (especially the labeling on the axes), but you get the point. ..
A few additional notes on graphical options:

e R can display any color in the RBG or HEX system. However it also has a ton of colors that you can
just refer to by name, see http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf.

o Same with the shapes and line types, see http://www.cookbook-r.com/Graphs/Shapes_and_ line
types/.

R colors in all their glory: http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf.

Working with R on your machine

In this workshop, we used RStudio Cloud. In future work on your own computer, you should use R together
with the integrated development environment (IDE) RStudio. In addition to offering a ‘cleaner’ programming
development than the basic R editor, RStudio offers a large number of added functionalities for integrating
code into documents, built-in tools and web-development. To get started, please download the latest version
of RStudio and R from this website:

https://www.rstudio.com/products/rstudio/download/

Working Directories

When working with R on your own machine, the program needs to know where to look for files if you want to
read data and where to store files if you write data. The getwd() command returns the current working
directory. We can change the working directory with setwd() (see below).

Think of your computer as a filing cabinet. R scripts are essentially text files with commands that you want R
to execute. In order to execute these files, we need to tell R where to look for the list of commands we want
to execute. Setting a working directory is analogous to telling R in which file in the filing cabinet we stored
our document (code) and into which file in the filing cabinet to put new documents (such as graphs, new
data frames, new code).

#getwd () # Prints the current working directory
#setwd ("/Users/thereseanders/Projects") # Sets new working directory

Important for Windows users: In R, the backslash is an escape character. Therefore, entering file paths
is a little different in Windows than on a Mac. On a windows machine you would enter:

setwd ("C:\\Users\\thereseanders\\Projects")

Sources

Economist Intelligence Unit (2017): Democracy Index.  https://infographics.economist.com/2017/
DemocracyIndex/.

Imai, Kosuke (2017): Quantitative Social Science. An Introduction. Princeton and Oxford: Princeton
University Press.

Raleigh, Clionadh, Andrew Linke, Havard Hegre and Joakim Karlsen. 2010. Introducing ACLED — Armed
Conflict Location and Event Data. Journal of Peace Research 47(5), 651-660.

World Bank (2017): Population, total. https://data.worldbank.org/indicator/sp.pop.totl?end=2016&start=
2015.
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