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Welcome!

This afternoon, we will be going over:

The basics of coding in Python

Data management with pandas  🐼
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Overview
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Key Concepts

Before we start writing programs in Python, let's first walk through some foundational concepts

that explain how Python works under the hood: the core data types and built-in data structures

that you'll use all the time.

Data types

Python 101



Assignment

Strings

Lists

Dictionaries

There are four data types:

Integers ( int ): numbers without a decimal

Floating point numbers ( float ): numbers with a decimal

Booleans ( bool ): True  or False  values

Strings ( str ): Typically a representation of plain text. However, anything that is wrapped

in quotes (single or double) is treated as a string.

The built-in function to check data types in Python is type() . This behaves the same as the

class()  function in R .

Data types

# Integers and floats
x = 5           # int
y = 3.14        # float

# Boolean
z = True        # bool

# String
name = "Allison"  # str

And here is how to check the data type of an object:

# Check types
type(z)

You can convert an object to a different type by calling the type as a function:

xx = str(5)
print(xx)
print(type(xx))

In R , we typically use <-  to assign values to objects. However, in Python, you can only use =
for assigning values in Python.

Assignment



Because there is no directional indicator with the equal sign, the values are always on the right

hand side while the variable/object will always be on the left-hand side.

x = 3

y = 0.5

z = True

Use the print  function if you want an object to be shown:

Printing

'Hello!'
'Hello world!'

print('Hello!')
print('Hello world!')

Knowing data types is important because you will get different behavior from different

operations depending on the type of objects you're working with.

This is especially important for Python because, unlike R , you can perform mathematical

operations across data types.

Mathematical operations with character strings are referred to as string operations. String

operations are particularly useful for things like text analysis.

The examples below demonstrate how string operations work.

Working with strings

type(1)

type('1')

1 + 1

When you add two strings using the +  operator, the two strings are concatenated:

'1' + '1'

A string multiplied by an integer n will repeat the string n times:



'1' * 5

Strings that are placed next to each other are automatically concatenated:

'1' '1'

print("3" + "4")
print("3" * 2)
print(3 + 4)
print(type("3" + "4"))

Exercise 1

Assign the string "5" to a variable called num_string .

Assign the integer 5  to a variable called num_int .

Try printing num_string  + num_int . What happens?

Convert one of the variables to fix the error, and write an expression that produces the

integer 55.

num_string = "5"
num_int = 5

num_string + num_int

num_int = str(num_int)
int(num_string + num_int)

Lists are a very common data structure in Python that can hold heterogenous information. They

are created with a pair of square brackets. Each element in a list is separated by a comma. e.g.:

Lists

l = [1, True, "3"]

Python is a 0-indexed language. This means counting starts at 0, and not 1.

If you're accustomed to coding in R , this can feel a bit unintuitive at first. This is because R uses

1-based indexing, so the first item in a vector or list is at position 1. In Python, the first item is at

position 0, the second at 1, and so on.

This difference is especially important when you're accessing elements in lists or dictionaries,

and it's a common stumbling block when switching between the two languages. With practice,



though, 0-based indexing becomes second nature!

To extract an element from a Python list, you can use one pair of square brackets:

Subsetting lists

l[0]

You can select an element from the end of a list using negative indices:

Negative indices

l[-1]

-1  selects the last element in a list, -2  selects the penultimate element, and so on...

Slicing refers to the extraction of multiple list elements.

To simultaneously select multiple elements you use the colon notation. The first value

represents the beginning index, and the second value represents the last index:

Slicing

l = [0, 1, 2, 3, 4, 5]

l[0:3]

You can also have an additional third value to specify a step size:

l[0:5:2]

The indices you pass into the colon notation can be optional.

If you leave the first value blank, Python will slice from the beginning to the second specified

index:

l[:3]

If you leave the second value missing, Python will slice from the first specified index until the

end:



l[1:]

If you leave the first two values blank, and just specify a step size, Python will go through the

entire list and return the elements depending on the specified step size:

l[::2]

While Python lists are great for storing information, they don't support named elements like R's

named lists.

Instead, Python uses dictionaries for labeled data, where each item is stored as a key–value

pair.

Python dictionaries are created with a pair of curly-brackets. Each key-value pair includes a

colon, with the key to the left, and the value to the right of the colon. Multiple key-value pairs are

separated by commas:

Dictionaries

d = {'int_value':1, 'bool_value':True, 'str_value':'three'}

You can extract a "value" from the dictionary is by placing the "key" of the dictionary inside the

square brackets:

d['str_value']

Note: Always access a value using its key, not by assuming where it appears in the dictionary.

You can find the number of elements in a list or dictionary by using the len()  function:

print(len(d))
print(len(l))

Create a list called characteristics  that contains the following strings: 'first_name',

'last_name', 'age', 'education', and 'employed'.

Create a dictionary called person  that assigns values to each of the characteristics.

Print the full name of your person based on the values assigned in your person dictionary.

Exercise 2



characteristics = ['first_name', 'last_name', 'age', 'education', 'employed']
person = {'first_name': 'Jane', 'last_name': 'Doe', 'age': 30, 'education': 'PhD'
print(person['first_name'], person['last_name'])

Control flow refers to the order in which code is executed. Python provides several control flow

statements that allow you to control the flow of your program:

Control Flow

if/else statements allow you to perform different actions based on certain conditions, e.g.:

x = 10

if x > 5:
    print("x is greater than 5")
else:
    print("x is less than or equal to 5")

for loops allow you to iterate over a sequence of values and perform an action on each

value, e.g.:

fruits = ["apple", "banana", "cherry"]

for fruit in fruits:
    print(fruit)

while loops allow you to execute a block of code repeatedly while a certain condition is

true, e.g.:

x = 0

while x < 5:
    print(x)
    x += 1

0
1
2
3
4

break and continue statements allow you to modify the behavior of loops

break = exit loop early

continue = skip over iterations of a loop



for i in range(10):
    if i == 3:
        break
    if i == 1:
        continue
    print(i)

0
2

Create a list of numbers from 1 to 5. Then:

1. Use a for loop to go through each number

2. If the number is 2, print "Found two!"

3. Otherwise, print "Number:" followed by the number

The output should look like this:

Number: 1  
Found two!  
Number: 3  
Number: 4  
Number: 5

Exercise 3

numbers = [1, 2, 3, 4, 5]

for num in numbers:
    if num == 2:
        print("Found two!")
    else:
        print("Number:", num)

Number: 1
Found two!
Number: 3
Number: 4
Number: 5

Functions, methods, and attributes

As previously discussed, functions work similarly in both R  and Python. However, while R  relies

heavily on functions, Python relies on functions, methods, and attributes.



Functions work similarly in both R  and Python. This is what the Python syntax looks like for

functions:

def greet(name):
    print("Hello,", name)

While R  relies heavily on functions, Python relies on functions, methods, and attributes.

(Note: attributes will be demonstrated later, since the data structures we have seen thus far do

not have any meaningful attributes for us to play around with)

You can add elements to a list using the append()  method:

Appending lists

l = [0, 1, 2, 3, 4, 5]
l.append(6)
l

Note the use of the dot notation to call the append  method from the list  object.

For dictionaries, you can call the update()  method:

Updating dictionaries

d = {'lol':'laugh out loud', 'idk':'i dont know', 'fml':'f my life'}
d.update({'dm': 'dont mind', 'afaik': 'as far as i know'},)
d

If the key already exists, the dictionary will be updated with the new value. Otherwise, new keys

will be added to the dictionary (as above).

d.update({'dm': 'direct message'})
d

What happens when you try to run the following code chunk? Why?

Edit the code to address this error.

Exercise 4

d.append({'rofl': 'rolling on the floor laughing'})



Answer: We see an error message beacuse dictionary objects do not have an 'append' attribute.

If we want to augment lists, we use the 'append' attribute. If we want to augment dictionaries,

we use the 'update' attribute.

# Write the correct code here
d.update({'rofl': 'rolling on the floor laughing'})

# Check that it works
d

Libraries in Python are similar to packages in R : they extend the base language with specialized

tools and data structures.

Many of the objects that are widely used in data science are not built into Python by default. To

use them, you'll need to import external libraries.

Two libraries you'll likely use in nearly every data analysis script are:

numpy : Provides support for numeric arrays and matrix operations

pandas : Offers the DataFrame  object for working with tabular data (similar to dplyr
in R )

When you load a package in R , you can use any of the functions from that package directly.

However, things work a little differently with Python.

To load in a Python library, you use the import  keyword, e.g.:

Libraries

import numpy

It is also useful to have information on the versions of libraries you use in your code; this is

helpful information for both replicability and troubleshooting:

numpy.__version__

Once you import the library, you have to access functions from the library using the dot notation:

library_name.function_name , e.g.:

numpy.array([1, 2, 3])

Typing the full library name each time can get tedious. Since you have to use library names to

call the functions attached to them, Python allows you to create a shortcut called an alias.



It's common practice to import NumPy as np  and Pandas as pd :

import numpy as np
import pandas as pd

Now, instead of writing numpy.array , you can write:

np.array([1, 2, 3])

Data management with pandas  🐼

As previously mentioned, we'll be using the Parties' Immigration and Integration Positions

Dataset (PImPo) for our applied examples. The dataset, which is an expansion of the data

resources offered by the Manifesto Research on Political Representation (MARPOR), includes

information on the following variables:

country : MARPOR country id

party : MARPOR party id

date : election date

totals : total quasi-sentences (QSs) coded

totals_immi : total QSs on immigration

totals_inti : total QSs on integration

saliency : the proportion of QSs related to immigration and integration relative to the

total QSs coded

saliency_immi : proportion of immigration-related QSs relative to total QSs coded

saliency_inti : proportion of integration-related QSs relative to total QSs coded

immi_pos : a score that indicates how positively or negatively a party talks about

immigration

immi_pos_saliency : the percentage of directional (non-neutral stance) QSs about

immigration

inti_pos : a score that indicates how positively or negatively a party talks about

integration

inti_pos_saliency : the percentage of directional (non-neutral stance) QSs about

integration

Now that we've got everything we need, let's play around with data! First, let's import the

pandas  library under the alias pd :

Loading datasets



import pandas as pd

Now let's load in our data using the pandas.read_csv  function:

df = pd.read_csv("PImPo_party.csv")

Note: See the above section on data if you need to first upload the dataset from your local files.

Let's inspect the data.

Data frame at a glance

df.head()

Here you'll see that there are three components to a Pandas  data frame:

Column names on the top

Index on the left

Body of the data frame

Each of these components are attributes that can be accessed independently of one another,

e.g.:

df.columns

Note that ()  is not necessary for this call since columns  is not a function or method.

Calling a data frames index may be helpful when working with time series data; you can replace

the original index with date-time information. This is how you access it:

df.index

The shape  attributes store the dimensions of the data frame.

df.shape

The values  attribute returns the body of the data frame:

df.values

If you don't have too many columns, info()  is useful for summarizing what's in the data.

https://colab.research.google.com/drive/1CBogWrGKMZIFolCrjtrFdKuhxYoHMYSs#scrollTo=_J942a8Xatsl


df.info()

What do we now know about the data from this information, that we didn't know from looking at

the index , shape , and values  attributes?

Exercise 5

Answer: Here's what we can learn a lot after applying the .info()  method that we didn't

already know from applying the other functions:

Data types: 4 integer columns, 9 float columns

Missing data

The totals_immi , immi_pos , immi_pos_saliency , totals_inti ,

inti_pos , and inti_pos_saliency  variables have missing values.

The immigration-related and integration-related variables have the same number of

missing values (200 non-null for immigration-related variables, 208 non-null for

integration-related variables).

Memory usage is relatively small: 24.7KB

Now that we've had a look at the data, let's do something with it!

Subsetting data

If you want to extract a single column from a pandas DataFrame, you can use the square

bracket notation:

Selecting a single column

df['country']

These numbers aren't the most useful for us; even with a key, it would be easier/more readable

for the country names to be included in the data. We'll get to that in a bit.

We can take this column and save it to its own variable:

country_df = df['country']

Then we can preview only the first few rows using the .head()  method:



country_df.head()

Let's check out the type of country_df :

type(country_df)

This tells us that a single column of a DataFrame is a Series, not a DataFrame. While they are

very similar and interrelated, this also means that each of these object types have their own set

of methods and attributes.

Let's say you want to select multiple columns from the dataset—specifically, information about

the country, political party, and the total number of quasi-sentences coded.

Here's how you can do that and store it in a list:

Selecting multiple columns

subset = df[['country', 'party', 'totals']]
subset.head()

The double square brackets indicate that you are both taking the subset of the data frame and

storing it as a list.

In pandas, there are two ways to access specific rows from a DataFrame: .loc[]  and

.iloc[] .

.loc[]  (location) retrieves rows based on the row label, which is what we saw in our initial

glance of the data. It's not about the row's numeric position, but what the index is named:

Filtering rows with .loc[]  and .iloc[]

df.loc[2]

Note that, if you end up combining datasets, you may end up with two rows that have the same

index number if the index labels correspond to the respective original datasets. So .loc[]  can

be a bit tricky in that way.

On the other hand, .iloc[]  (index location) identifies rows based on their position. Recall that

Python is 0-indexed. This means that, for example, iloc[2]  will always return the third row,

which is indexed at position 2.



df.iloc[2]

If you want to access multiple rows, you can put that set in a python list (like we did with

columns), e.g.:

df.iloc[[5, 2]]

We use .loc[]  to subset both rows and columns in a DataFrame . The syntax is similar to

how subsetting works in R : rows go on the left, columns go on the right, separated by a

comma inside the brackets.

Extracting multiple rows and columns based on location

df.iloc[0:5, 0:4]

As we reviewed with slicing elements of a list, we can use shortcuts to indicate ranges of rows

and/or columns:

df.iloc[:5, :4]

Sometimes, instead of selecting rows by their position or label, it makes more sense to filter

them based on the values in one or more columns. This is known as boolean subsetting.

In pandas, you can create a condition that--under the hood--returns True  or False  for each

row, and use that to filter the DataFrame.

Let's say we are only interested in looking at parties from Germany (country code 41 ), and their

positions on immigration ( immi_pos ). This is how we would subset the data to get this

information:

Filtering rows with boolean subsetting

df.loc[df['country'] == 41, ['date', 'country', 'party', 'immi_pos']]

Let's say we now want to filter based on two criteria:

Germany ( country  = 41)

anti-immigrant positions ( immi_pos  < 0)

To do this, we wrap each condition in its own set of parentheses and connect them using a

logical operator ( &  for “and”, |  for “or”):

Filtering rows with multiple boolean subsetting



df.loc[(df['country'] == 41) & (df['immi_pos'] < 0), ['date', 'country', 'party', 

Run the two code chunks below. What do you notice about the similarities and differences in

their outputs? Why are they behaving this way?

Hint: Have another glance at the .head()  of the data frame to inspect how the rows are

labeled.

Exercise 6a

df.loc[3]

df.iloc[3]

df.head()

Answer: The outputs are the same because the row numbers and the index labels are the same.

In other words, the row labels are accessed by .loc[]  match the integer positions accessed

by .iloc[] .

Use boolean filtering to create a data frame with information on the immigration and integration

positions of political parties from the U.S. and Canada.

Hint: Have a look at the codebook: https://manifesto-

project.wzb.eu/down/datasets/pimpo/PImPo_codebook.pdf#page=9.60

Exercise 6b

df.loc[(df['country'] == 61) | (df['country'] == 62), ['country', 'date', 'party'

Let's transform this data for analysis. We will select the variables we are interested in, reshape

the data, and compute grouped summaries. If you have used dplyr  or tidyr  in R, some of

the Python syntax will feel similar.

For your reference, here are some of the more common data wrangling tasks and their

implementation in Python/ R :

Task Description Python ( pandas )

Recoding variables Map values using a dictionary/lookup df['column'].map(dictionary)

Tidy data management

https://www.google.com/url?q=https%3A%2F%2Fmanifesto-project.wzb.eu%2Fdown%2Fdatasets%2Fpimpo%2FPImPo_codebook.pdf%23page%3D9.60
https://www.google.com/url?q=https%3A%2F%2Fmanifesto-project.wzb.eu%2Fdown%2Fdatasets%2Fpimpo%2FPImPo_codebook.pdf%23page%3D9.60


Task Description Python ( pandas )

Selecting columns Keep only specified columns df[['col1', 'col2', 'col3']]

Reshaping wide to long Convert wide format to long format pd.melt()

Dropping missing values Remove rows with missing values df.dropna()

Converting data types Change column data types df['col'].astype()

Date parsing Convert strings/integers to datetime pd.to_datetime()

Extracting date parts Extract year, month, etc. from dates df['date'].dt.year

Grouping data Group data by specified variables df.groupby(['col1', 'col2'])

Summarizing grouped data Calculate summary statistics by group .groupby().mean() , .sum() , .count(

Resetting index Convert grouped result back to regular DataFrame df.reset_index()

Let's say we want to compare the average immigration and integration positions of political

parties across countries and over time. With this goal in mind, we need to:

1. Make the dataset more interpretable by mapping country codes to meaningful names.

2. Only keep the columns we care about.

3. Reshape the data from wide to long.

4. Drop missing values.

5. Convert the date variable to datetime  format

6. Group and summarize the data by country and year.

Based on the codebook, we can create a dictionary that maps country  codes onto country

names:

Mutating/recoding variables

country_labels = {
    13: 'Denmark',
    14: 'Finland',
    22: 'Netherlands',
    33: 'Spain',
    41: 'Germany',
    42: 'Austria',
    43: 'Switzerland',
    53: 'Ireland',
    61: 'USA',
    62: 'Canada',
    63: 'Australia',
    64: 'New Zealand'
}

We can then map  this dictionary onto the dataset:

df['country'] = df['country'].map(country_labels)

Great, let's check to see that this worked:

https://www.google.com/url?q=https%3A%2F%2Fmanifesto-project.wzb.eu%2Fdown%2Fdatasets%2Fpimpo%2FPImPo_codebook.pdf%23page%3D9.60


df.head()

What are the relevant variables that we need to select for this exercise?

Let's have a look at what the variables are:

Select columns of interest

df.columns

Based on this information, we see that we only need 5 variables:

country
party
date
immi_pos
inti_pos

df_subset = df[['country', 'party', 'date', 'immi_pos', 'inti_pos']]

Great, let's have another look at the data:

df_subset.head()

Right now, immigration and integration positions are stored in separate columns — this means

our data is in wide format. To make it easier to summarize, reshape, or visualize, we'll use

pd.melt()  to convert the dataset into long format:

Reshaping the data from wide to long

df_long = pd.melt(
    df_subset,
    id_vars=['country', 'party', 'date'],
    var_name='position_type',
    value_name='position_score'
)

Great, let's have a look at the resulting data frame:

df_long



We see that there are some NaN  values under the position_score  variable. This is going to

impede on our goal of grouping and summarizing information from this variable.

Let's deal with these missing values. To do this, we drop any rows where position_value  is

missing using Panda's .dropna  method:

Dropping rows with missing values

df_complete = df_long.dropna(subset=['position_score'])

Great, let's check to see if this removed anything. We can do this using a combination of two

methods:

.isna() : returns True  for missing values, False  otherwise

.any() : checks for the presence of something; returns True  if it is found and False
otherwise

Let's look at these one by one. This is what happens if you just use .isna() :

df_long['position_score'].isna()

It does the job, but we can present this information more cleanly. This is where .any()  comes

in:

df_long['position_score'].isna().any()

Now let's check for any missing values in df_complete :

df_complete['position_score'].isna().any()

Dates in raw datasets are often stored as integers or strings. However, to work with them

meaningfully (e.g. group by year, extract months, compare time periods), we need to convert

them to a datetime  format.

If you've used lubridate  in R , this is similar to using functions like ymd()  or as_date()
to unlock date-aware functionality.

Pandas has a method called to_datetime  that converts a variable into datetime  format.

To get an idea of how this works, let's first inspect the type of variable we're starting out with.

Let's try applyin the type()  function from before:

Working with dates 📅



type(df_complete['date'])

Did this give us the information we wanted? Nope! We instead got the type of the entire column,

which is a Series  as previously discussed.

In pandas , when we are interested in inspecting a variable's type, we call the .dtype  method:

df_complete['date'].dtype

Okay, so we're starting out with an integer. We're going to need to convert this to a string

variable if we want to then parse it to datetime  format:

df_complete['date'] = df_complete['date'].astype(str)

Let's create a new variable year_month , which is a datetime  object based on the existing

date  variable:

df_complete['year_month'] = pd.to_datetime(df_complete['date'], format='%Y%m')

We can use the datetime  Python library to further parse our year_month  variable:

import datetime as dt

df_complete['year'] = df_complete['year_month'].dt.year
df_complete['month'] = df_complete['year_month'].dt.month

df_complete.info()

Now that we have prepared our data, let's get to computing the average party positions

regarding immigration and integration, disaggregated by country-years.

As with before, the syntax we use to group and summarize pandas data frames should seem

familiar to similar functions if you are used to working with dplyr 's group_by()  and

summarize() .

Grouping and summarizing the data

The .groupby()  method groups the data based on specified variable(s):

df_complete.groupby(['country', 'year'])



However, nothing happens with the data until you combine .groupby()  with an aggregation

method such as:

.mean()

.count()

.sum()

df_avg_scores = df_complete.groupby(['country', 'year', 'position_type'])['positi
df_avg_scores.head()

Great, looks like we're getting somewhere! Let's just check one thing:

type(df_avg_scores)

Uh oh, that's not a data frame! Sometimes, when you're subsetting data frames to create new

data frames, you should check if Python has recognized the new data frame as its own data

frame.

We can remedy this with the .reset_index()  method:

df_final = df_avg_scores.reset_index()

Nearly there; now that the calculations have been made, this data frame would probably be a

little easier to read/more interpretable in its wide format. That said, time for another exercise!

1. Reshape the data back to wide format

Create a new DataFrame called df_wide  where immigration and integration scores

are stored in separate columns.

Hint: Use the .pivot_table()  method.

2. Inspect divergences between integration and immigration positions at the country level

Using your new df_wide  DataFrame, create a new variable gap  which computes

the difference between immi  and inti  scores.

Which country has the largest positive divergence between their positions on

immigration and integration?

Which country has the largest negative divergence between their positions on

immigration and integration?

Hint: Use the pandas  documentation if you are unsure how to apply the suggested methods.

Exercise 7

https://www.google.com/url?q=https%3A%2F%2Fpandas.pydata.org%2Fdocs%2F


df_wide = df_final.pivot_table(index=['country', 'year'], columns='position_type'

df_wide

df_wide['gap'] = df_wide['immi'] - df_wide['inti']

df_wide.head()

# Find the country/year with the largest positive gap (immi > inti)
largest_positive_gap = df_wide['gap'].___()
country_largest_positive_gap = df_wide[df_wide['gap'] == largest_positive_gap]

# Find the country/year with the largest negative gap (inti > immi)
largest_negative_gap = df_wide['gap'].___()
country_largest_negative_gap = df_wide[df_wide['gap'] == largest_negative_gap]

print("Country/Year with the largest positive gap:")
print(country_largest_positive_gap)

print("\nCountry/Year with the largest negative gap:")
print(country_largest_negative_gap)

Write a script that wrangles data in Python based on an R  script and/or dataset from your

research.

Bonus Exercise (if time permits)

Lehmann, P., & Zobel, M. (2018). Positions and saliency of immigration in party manifestos: A

novel dataset using crowd coding. European Journal of Political Research, 57(4), 1056-1083.

https://doi.org/10.1111/1475-6765.12295
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