
Functional Programming in R
Summer School for Women in Political Methodology

Allison Koh

July 21, 2025

Course Description

This course offers an introduction to functional programming in R, with applications in political
science. Through hands-on exercises, participants will learn how to streamline repetitive tasks,
implement modular workflows, and document code for replicability1. Prior experience with
the fundamentals of R and RStudio, as well as data management in R, is recommended.

Setup

Before we get started, let’s make sure the following dependencies are installed/loaded for
walking through the examples below.

library(tidyverse)
library(here) # for path management
library(rlang)

Functions 101

Anatomy of a function

R functions are made up of three parts:

1. Formals (a.k.a. inputs): the parameters or arguments defined by the function
2. Body: the code that defines what the function does with its input(s)
3. Environment: where the function stores variables and values it uses during execution

1We won’t get to documentation today, but I have added a link on how to do it in the “Additional resources”
section.

1

You can access the inputs of any function using formals() or args():

formals(tidytext::get_stopwords)

$language
[1] "en"

$source
[1] "snowball"

args(tidytext::get_stopwords)

function (language = "en", source = "snowball")
NULL

You can do the same with the body or environment of a function.

body(tidytext::get_stopwords)

{
rlang::check_installed("stopwords", "to use this function.")
tibble(word = stopwords::stopwords(language = language, source = source),

lexicon = source)
}

environment(tidytext::get_stopwords)

<environment: namespace:tidytext>

Discussion Q1 What do we learn about the stopwords function from accesing its inputs,
body, and environment?

2

Writing functions

In practice, we consider the following when writing functions:

• Name: An intuitive identifier for what the function does
• Argument(s): A list of values passed onto the function
• Body: The code that runs every time a function is called
• Return value: The output that will be sent into the global environment once the

function is finished running

You can follow these steps to write functions:

1. Write a script that pertains to a specific task that will form the body of your function.
2. Come up with a good name:

• Be explicit about exactly what the function does.
• Keep it concise.
• When in doubt, start with a verb that is meaningful to what the function does.

3. Add argument(s) to the function’s input.

• Arguments should be based on the parts from the original script that will be re-
moved/abstracted.

4. Make sure you return the output of the function to the global environment.

• You can save this to the global environment by assigning the output of the function
to an object.

Let’s write our first function! We’ll begin with a relatively simple example: generating
synthetic data. This sort of function can be useful for developing research designs and forming
pre-analysis plans.

We will first write a function that generates a vector of ages for individuals. First, starting
with the script that will turn into the body of the function:

age <- rnorm(n = 25, mean = 40, sd = 15) %>%
round() %>%
pmax(0) %>% # ensures values are not less than 0
pmin(100) # ensures that values are not greater than 100

Now let’s turn this into a function:

1. Let’s name it generate_age_vec.
2. Following the code in our original script, our arguments will match those for the rnorm

function:

3

• n for number of individuals in the vector
• mean to establish the average age represented
• sd for the standard deviation that will inform the distribution of the vector

generate_age_vec <- function(n_people, mean_age, sd_age){
age <- rnorm(n = n_people, mean = mean_age, sd = sd_age) %>%

round() %>%
pmax(0) %>%
pmin(100)
return(age)

}

Note: Saving age to an object is not necessary for putting together this function, but assigning
parts of the function’s body to locally defined objects will be key to writing more complicated
functions.

Now let’s try out our function! Let’s say we want to generate synthetic data for a study
targeting university students:

generate_age_vec(n_people = 100, mean_age = 20, sd_age = 1)

[1] 21 19 21 21 19 18 21 19 20 20 22 22 19 20 20 21 18 21 18 20 21 21 19 20 21
[26] 20 21 21 21 21 21 20 20 20 19 21 22 19 20 20 20 20 20 19 19 20 20 20 19 20
[51] 19 19 20 20 19 21 19 20 22 20 21 19 20 20 22 19 20 20 18 20 22 21 20 20 21
[76] 20 19 19 21 19 21 20 19 22 22 20 21 20 20 20 20 20 21 20 18 19 22 20 20 20

Looks good! Let’s say we want the function to default to generating cohorts of synthetic
information on 100 college-age individuals. We can add values to the arguments in our original
function to do this.

generate_age_vec <- function(n_people = 100, mean_age = 20, sd_age = 1){
age <- rnorm(n = n_people, mean = mean_age, sd = sd_age) %>%

round() %>%
pmax(0) %>%
pmin(100)
return(age)

}

We can then just call the function without specifying any arguments/values:

4

generate_age_vec()

[1] 21 19 21 19 20 19 19 20 20 19 20 20 20 22 19 19 19 19 20 20 21 20 21 20 21
[26] 21 18 20 20 19 20 21 20 21 21 20 19 20 22 20 20 18 19 19 20 21 20 20 22 19
[51] 20 19 19 20 22 20 21 20 21 20 20 21 20 21 22 19 20 21 19 21 19 21 19 21 20
[76] 21 21 20 21 20 19 22 21 19 20 19 21 20 22 21 20 19 19 22 19 20 18 20 20 20

And if we want to focus on a different age range/cohort, we can override these default values:

generate_age_vec(n_people = 25, mean_age = 35, sd_age = 15)

[1] 17 31 35 14 19 18 32 47 6 41 38 37 27 36 57 29 30 42 18 41 36 20 26 6 50

Building on this, let’s say you want to create a new variable based on this vector that specifies
which generation an individual belongs to:

• genX: 43-58 years old
• genY: 27-42 years old
• genZ: 11-26 years old

First, using the function for generating synthetic age data above, let’s create a vector of
numbers to work with.

set.seed(77976)
age <- generate_age_vec(n_people = 50, mean_age = 40, sd_age = 10)
age

[1] 33 42 45 35 56 19 19 27 24 32 19 35 56 41 42 36 37 30 57 25 43 39 24 45 29
[26] 40 29 55 46 44 40 35 33 51 50 37 49 30 29 36 44 31 36 52 20 11 35 40 37 37

How would we do it for this specific age vector?

generation <- cut(
age,
breaks = c(10.5, 26.5, 42.5, 58.5),
labels = c("genZ", "genY", "genX")

)

Exercise 1 Write a function that codes generations based on a vector of ages, then apply it
to our age vector:

5

code_generation <- function(age){
ADD FUNCTION BODY HERE

}

code_generation(age)

[1] genY genY genX genY genX genZ genZ genY genZ genY genZ genY genX genY genY
[16] genY genY genY genX genZ genX genY genZ genX genY genY genY genX genX genX
[31] genY genY genY genX genX genY genX genY genY genY genX genY genY genX genZ
[46] genZ genY genY genY genY
Levels: genZ genY genX

Applying functions to data

For applied examples, we will use the Crowd Counting Consortium’s U.S. Protest
Event Data (Ulfelder 2025) as our basis for writing data frame functions. This dataset
provides event data on contentious politics in the United States. Events of interest comprise
of “any type of activity that…is carried out with the explicit purpose of articulating a grievance
against a [political] target, or expressing support of a [political] target” and meet the following
inclusion criteria:

• Open to the public and free of charge
• Nonviolent: not primarily organized to cause direct harm to any persons
• Occur in the United States, including Puerto Rico, Guam, and the U.S. Virgin Islands

The data comprise of three phases. We will be working with data from Phase 2 of the project,
which covers events from 2021 to 2024.

If you were to use this data in your work IRL, writing functions that apply to this dataset
would make a lot of sense since there are two other “waves” of event data that are similarly
structured.

Let’s start by importing the dataset.

ccc_data <- read_csv(here("data", "ccc_compiled_20212024.csv"), show_col_types = FALSE)

Let’s take an initial peek at the data.

str(ccc_data)

6

https://dataverse.harvard.edu/dataverse/crowdcountingconsortium/
https://dataverse.harvard.edu/dataverse/crowdcountingconsortium/

spc_tbl_ [139,823 x 72] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
$ date : Date[1:139823], format: "2021-01-01" "2021-01-01" ...
$ locality : chr [1:139823] "Montgomery" "Tucson" "Lafayette" "Palo Alto" ...
$ state : chr [1:139823] "AL" "AZ" "CA" "CA" ...
$ location_detail : chr [1:139823] "statewide" "E Speedway Blvd and N Euclid Ave" "El Curtola Blvd & Highway 24" "El Camino Real and Embarcadero Rd" ...
$ online : num [1:139823] 0 0 0 0 0 0 0 0 0 0 ...
$ type : chr [1:139823] "strike; boycott" "vigil" "demonstration" "vigil" ...
$ title : chr [1:139823] NA NA NA NA ...
$ macroevent : chr [1:139823] NA NA NA NA ...
$ organizations : chr [1:139823] "Free Alabama Movement" "Women in Black" "Contra Costa County Patriots" "WILPF" ...
$ participants : chr [1:139823] "prisoners" NA NA NA ...
$ claims : chr [1:139823] "against prison labor, for safer conditions in Alabama prisons during coronavirus pandemic" "for ending Israel's occupation of Palestine, for Palestinian liberation" "for President Trump" "for peace, against war, for banning nuclear weapons" ...
$ claims_summary : chr [1:139823] "against prison labor;for safer conditions in Alabama prisons during coronavirus pandemic" "for ending Israel's occupation of Palestine;for Palestinian liberation" "for President Trump" "for peace;against war;for banning nuclear weapons" ...
$ claims_verbatim : chr [1:139823] NA NA NA NA ...
$ issue_tags_summary : chr [1:139823] "covid; criminal justice; labor" "foreign affairs" "presidency" "military" ...
$ issue_tags_verbatim : chr [1:139823] NA NA NA NA ...
$ issue_tags : chr [1:139823] "covid;criminal justice;labor" "foreign affairs" "presidency" "military" ...
$ valence : num [1:139823] 1 0 2 0 2 1 0 0 0 1 ...
$ size_text : chr [1:139823] NA NA NA NA ...
$ size_low : num [1:139823] NA NA NA NA 1000 NA NA NA 21 NA ...
$ size_high : num [1:139823] NA NA NA NA 1000 NA NA NA 21 NA ...
$ size_mean : num [1:139823] NA NA NA NA 1000 NA NA NA 21 NA ...
$ size_cat : num [1:139823] 0 0 0 0 3 0 0 0 1 0 ...
$ arrests : chr [1:139823] NA NA NA NA ...
$ arrests_any : num [1:139823] 0 0 0 0 0 0 0 0 0 0 ...
$ injuries_crowd : chr [1:139823] NA NA NA NA ...
$ injuries_crowd_any : num [1:139823] 0 0 0 0 0 0 0 0 0 0 ...
$ injuries_police : logi [1:139823] NA NA NA NA NA NA ...
$ injuries_police_any : num [1:139823] 0 0 0 0 0 0 0 0 0 0 ...
$ property_damage : chr [1:139823] NA NA NA NA ...
$ property_damage_any : num [1:139823] 0 0 0 0 0 1 0 0 0 0 ...
$ chemical_agents : num [1:139823] 0 0 0 0 0 0 0 0 0 0 ...
$ participant_measures: chr [1:139823] NA NA NA NA ...
$ police_measures : chr [1:139823] NA NA NA NA ...
$ participant_deaths : logi [1:139823] NA NA NA NA NA NA ...
$ police_deaths : logi [1:139823] NA NA NA NA NA NA ...
$ source_1 : chr [1:139823] "https://sfbayview.com/2020/12/fam-launches-30-day-economic-blackout/" "https://www.tucsonpeacecalendar.org/events/" "https://www.sfgate.com/news/bayarea/article/Council-To-Ask-State-To-Remove-Highway-Overpass-16006373.php" "https://www.facebook.com/PPAWILPF/" ...
$ source_2 : chr [1:139823] "https://twitter.com/ShutDownRacism/status/1346193901313531906" "https://www.youtube.com/watch?v=8y4kFtLSPPs" NA "correspondence with organizer" ...
$ source_3 : chr [1:139823] NA NA NA NA ...
$ source_4 : chr [1:139823] NA NA NA NA ...
$ source_5 : chr [1:139823] NA NA NA NA ...
$ source_6 : chr [1:139823] NA NA NA NA ...
$ source_7 : chr [1:139823] NA NA NA NA ...

7

$ source_8 : chr [1:139823] NA NA NA NA ...
$ source_9 : chr [1:139823] NA NA NA NA ...
$ source_10 : chr [1:139823] NA NA NA NA ...
$ source_11 : chr [1:139823] NA NA NA NA ...
$ source_12 : chr [1:139823] NA NA NA NA ...
$ source_13 : chr [1:139823] NA NA NA NA ...
$ source_14 : chr [1:139823] NA NA NA NA ...
$ source_15 : chr [1:139823] NA NA NA NA ...
$ source_16 : chr [1:139823] NA NA NA NA ...
$ source_17 : chr [1:139823] NA NA NA NA ...
$ source_18 : chr [1:139823] NA NA NA NA ...
$ source_19 : chr [1:139823] NA NA NA NA ...
$ source_20 : chr [1:139823] NA NA NA NA ...
$ source_21 : chr [1:139823] NA NA NA NA ...
$ source_22 : chr [1:139823] NA NA NA NA ...
$ source_23 : chr [1:139823] NA NA NA NA ...
$ source_24 : chr [1:139823] NA NA NA NA ...
$ source_25 : chr [1:139823] NA NA NA NA ...
$ source_26 : chr [1:139823] NA NA NA NA ...
$ source_27 : chr [1:139823] NA NA NA NA ...
$ source_28 : logi [1:139823] NA NA NA NA NA NA ...
$ source_29 : logi [1:139823] NA NA NA NA NA NA ...
$ source_30 : logi [1:139823] NA NA NA NA NA NA ...
$ notes : chr [1:139823] "Scheduled to run 30 days." "every Friday since at least 2001; organizers clarified in Jan 2024 email that focus has always been on occupation of Palestine" NA "every Friday; started in 1922, some gaps since" ...
$ lat : num [1:139823] 32.4 32.3 37.9 37.4 34.1 ...
$ lon : num [1:139823] -86.3 -111 -122.1 -122.1 -118.1 ...
$ resolved_locality : chr [1:139823] "Montgomery" "Tucson" "Lafayette" "Palo Alto" ...
$ resolved_county : chr [1:139823] "Montgomery County" "Pima County" "Contra Costa County" "Santa Clara County" ...
$ resolved_state : chr [1:139823] "AL" "AZ" "CA" "CA" ...
$ fips_code : chr [1:139823] "01101" "04019" "06013" "06085" ...
- attr(*, "spec")=
.. cols(
.. date = col_date(format = ""),
.. locality = col_character(),
.. state = col_character(),
.. location_detail = col_character(),
.. online = col_double(),
.. type = col_character(),
.. title = col_character(),
.. macroevent = col_character(),
.. organizations = col_character(),
.. participants = col_character(),
.. claims = col_character(),

8

.. claims_summary = col_character(),

.. claims_verbatim = col_character(),

.. issue_tags_summary = col_character(),

.. issue_tags_verbatim = col_character(),

.. issue_tags = col_character(),

.. valence = col_double(),

.. size_text = col_character(),

.. size_low = col_double(),

.. size_high = col_double(),

.. size_mean = col_double(),

.. size_cat = col_double(),

.. arrests = col_character(),

.. arrests_any = col_double(),

.. injuries_crowd = col_character(),

.. injuries_crowd_any = col_double(),

.. injuries_police = col_logical(),

.. injuries_police_any = col_double(),

.. property_damage = col_character(),

.. property_damage_any = col_double(),

.. chemical_agents = col_double(),

.. participant_measures = col_character(),

.. police_measures = col_character(),

.. participant_deaths = col_logical(),

.. police_deaths = col_logical(),

.. source_1 = col_character(),

.. source_2 = col_character(),

.. source_3 = col_character(),

.. source_4 = col_character(),

.. source_5 = col_character(),

.. source_6 = col_character(),

.. source_7 = col_character(),

.. source_8 = col_character(),

.. source_9 = col_character(),

.. source_10 = col_character(),

.. source_11 = col_character(),

.. source_12 = col_character(),

.. source_13 = col_character(),

.. source_14 = col_character(),

.. source_15 = col_character(),

.. source_16 = col_character(),

.. source_17 = col_character(),

.. source_18 = col_character(),

.. source_19 = col_character(),

9

.. source_20 = col_character(),

.. source_21 = col_character(),

.. source_22 = col_character(),

.. source_23 = col_character(),

.. source_24 = col_character(),

.. source_25 = col_character(),

.. source_26 = col_character(),

.. source_27 = col_character(),

.. source_28 = col_logical(),

.. source_29 = col_logical(),

.. source_30 = col_logical(),

.. notes = col_character(),

.. lat = col_double(),

.. lon = col_double(),

.. resolved_locality = col_character(),

.. resolved_county = col_character(),

.. resolved_state = col_character(),

.. fips_code = col_character()

..)
- attr(*, "problems")=<externalptr>

head(ccc_data)

A tibble: 6 x 72
date locality state location_detail online type title macroevent
<date> <chr> <chr> <chr> <dbl> <chr> <chr> <chr>

1 2021-01-01 Montgomery AL statewide 0 stri~ <NA> <NA>
2 2021-01-01 Tucson AZ E Speedway Blvd ~ 0 vigil <NA> <NA>
3 2021-01-01 Lafayette CA El Curtola Blvd ~ 0 demo~ <NA> <NA>
4 2021-01-01 Palo Alto CA El Camino Real a~ 0 vigil <NA> <NA>
5 2021-01-01 Pasadena CA Rose Bowl Stadium 0 rall~ Patr~ <NA>
6 2021-01-01 San Francisco CA home of U.S. Hou~ 0 dire~ <NA> <NA>
i 64 more variables: organizations <chr>, participants <chr>, claims <chr>,
claims_summary <chr>, claims_verbatim <chr>, issue_tags_summary <chr>,
issue_tags_verbatim <chr>, issue_tags <chr>, valence <dbl>,
size_text <chr>, size_low <dbl>, size_high <dbl>, size_mean <dbl>,
size_cat <dbl>, arrests <chr>, arrests_any <dbl>, injuries_crowd <chr>,
injuries_crowd_any <dbl>, injuries_police <lgl>, injuries_police_any <dbl>,
property_damage <chr>, property_damage_any <dbl>, ...

10

Inspecting data

There’s still a lot of noise here. Let’s write some functions that can help us inspect the data
in a way that will be more informative for analyzing event data on contentious politics.

We can see from an initial inspection of the data that there are a lot of missing values. We are
likely to repeatedly address this issue across other phases of this data project, and potentially
across sub-analyses of the same dataset. Let’s write a function to make this less redundant.

First, let’s write a script that inspects the issue of missing values.

na_counts <- ccc_data %>%
summarise_all(~ sum(is.na(.))) %>%
pivot_longer(cols = everything(), names_to = "var", values_to = "n_missing") %>%
filter(n_missing > 0) %>%
arrange(desc(n_missing))

na_counts

A tibble: 65 x 2
var n_missing
<chr> <int>

1 source_28 139823
2 source_29 139823
3 source_30 139823
4 police_deaths 139822
5 participant_deaths 139809
6 injuries_police 139803
7 source_27 139786
8 source_26 139780
9 source_25 139775
10 source_24 139762
i 55 more rows

Great, let’s turn the above script into a function.

count_missing <- function(data){
na_counts <- data %>%

summarise_all(~ sum(is.na(.))) %>%
pivot_longer(cols = everything(), names_to = "var", values_to = "n_missing") %>%
filter(n_missing > 0) %>%
arrange(desc(n_missing))

11

return(na_counts)
}

count_missing(ccc_data)

A tibble: 65 x 2
var n_missing
<chr> <int>

1 source_28 139823
2 source_29 139823
3 source_30 139823
4 police_deaths 139822
5 participant_deaths 139809
6 injuries_police 139803
7 source_27 139786
8 source_26 139780
9 source_25 139775
10 source_24 139762
i 55 more rows

Manipulating data

Now we know what we’re working with. Let’s write a function that allows us to manipulate
the data for our purposes:

• We are not interested in columns that start with “source_”.
• We are not interested in keeping any variables with a high number of missings (>500).
• Among the selected columns with <500 missing values, we are not interested in keeping

any rows with missing values.

na_counts_subset <- na_counts %>%
filter(

!grepl("^source_", var),
n_missing < 500

)

na_counts_subset

A tibble: 10 x 2
var n_missing

12

<chr> <int>
1 fips_code 126
2 resolved_state 93
3 online 68
4 lat 61
5 lon 61
6 locality 53
7 type 49
8 valence 34
9 state 16
10 claims 9

Now we have a list of variables with limited missing values. Let’s select for variables with
limited missing values and then filter out any remaining rows with missing values.

This is what the script for that would look like, building off the code we’ve already written:

Vectors that specify which variables to keep/drop
missings_vars_all <- na_counts$var
missings_vars_keep <- na_counts_subset$var
missings_vars_drop <- setdiff(missings_vars_all, missings_vars_keep)

missings_vars_drop

[1] "source_28" "source_29" "source_30"
[4] "police_deaths" "participant_deaths" "injuries_police"
[7] "source_27" "source_26" "source_25"
[10] "source_24" "source_23" "source_22"
[13] "source_21" "source_20" "source_19"
[16] "source_18" "source_17" "source_16"
[19] "source_15" "source_14" "injuries_crowd"
[22] "source_13" "source_12" "property_damage"
[25] "source_11" "source_10" "source_9"
[28] "arrests" "source_8" "source_7"
[31] "source_6" "macroevent" "source_5"
[34] "police_measures" "source_4" "source_3"
[37] "issue_tags_verbatim" "participants" "participant_measures"
[40] "claims_verbatim" "size_text" "size_high"
[43] "size_low" "size_mean" "title"
[46] "source_2" "notes" "organizations"
[49] "resolved_county" "location_detail" "issue_tags_summary"
[52] "issue_tags" "resolved_locality" "claims_summary"
[55] "source_1"

13

Use `select()` to drop variables with too many missings
ccc_clean <- ccc_data %>%
select(-one_of(missings_vars_drop))

ncol(ccc_data)

[1] 72

ncol(ccc_clean)

[1] 17

And now filtering out all remaining rows with missing values
ccc_clean <- ccc_clean %>%
drop_na()

nrow(ccc_data)

[1] 139823

nrow(ccc_clean)

[1] 139580

Exercise 2a Write a function that handles missing values. It should:

• select for variables with limited missing values and
• filter out any remaining rows with missing values.

Hint: we can integrate the other function we just wrote into this function.

handle_missing_values <- function(data){
na_counts <- count_missing(data)

#' Select for variables that are not of interest
#' - too many missings
#' - contains the link to a `source`
na_counts_subset <- na_counts %>%

filter(

14

!grepl("^source_", var),
n_missing < 500

)

missings_vars_all <- na_counts$var
missings_vars_keep <- na_counts_subset$var
missings_vars_drop <- setdiff(missings_vars_all, missings_vars_keep)

missings_vars_drop

Use `select()` to drop variables with too many missings
data_subset <- data %>%

select(-one_of(missings_vars_drop))

And now filtering out all remaining rows with missing values
data_subset <- data_subset %>%

drop_na()

return(data_subset)
}

Exercise 2b: Apply this function to create a dataset called ccc_clean.

ccc_clean <- handle_missing_values(ccc_data)

nrow(ccc_clean)

[1] 139580

ncol(ccc_clean)

[1] 17

Great, we have a complete dataset to work with! The 17 remaining variables are as follows:

• date: Date of event in YYYY-MM-DD format; multi-day events are recorded as one-
day-per-row

• locality:Name of the locality (i.e., city or town) in which the event took place
• state: Two-letter U.S. postal abbreviation for the state or U.S. territory in which the

event took place

15

• online: Binary indicator for online-only events. 1 = online, 0 = in-person. Generated
from location and event type information in the source data

• type: Type(s) of protest action (e.g. march, protest, demonstration, strike, counter-
protest, sit-in), separated with semicolons or commas when more than one

• claims: Comma-separated text phrases describing what the event was about
• valence: Political valence of the event (2=right wing, 1=left wing, 0=other or neither)
• size_cat: categorical indicator of crowd size

– 0 = unknown
– 1 = 1-99
– 2 = 100-999
– 3 = 1,000 - 9,999
– 4 = 10,000+

• arrests_any: Binary indicator for whether or not any arrests occurred. 1 = yes, 0 =
no.

• injuries_crowd_any: Binary indicator for whether or not any protesters were report-
edly injured. 1 = yes, 0 = no.

• injuries_police_any: Binary indicator for whether or not any police officers were
reportedly injured. 1 = yes, 0 = no.

• property_damage_any: Binary indicator for whether or not protesters reportedly caused
any property damage. 1 = yes, 0 = no.

• chemical_agents: Binary indicator for whether police or other state security forces used
tear gas or other chemical irritants, such as pepper spray or pepper balls, during the
protest event. 1 = yes, 0 = no.

• lat and lon: latitude and longitude of the locality in which the event took place as
resolved by the Google Maps Geocoding API

• resolved_state: Postal abbreviation of the state or territory in which the event oc-
curred, as resolved by the Google Maps Geocoding API.

• fips_code: Five-digit FIPS code for the county in which the event took place

Now let’s say we’re interested in the type of events represented in the dataset. Let’s have a
look at the first few values in the type variable:

ccc_clean$type[1:5]

[1] "strike; boycott" "vigil" "demonstration" "vigil"
[5] "rally; parade"

As shown here, some events have more than one type indicated. Let’s write up some code that
expands the data so each row represents an event-type pairing:

16

ccc_types <- ccc_clean %>%
separate_rows(type, sep = ";") %>%
mutate(type == gsub("\\s+", "", type))

nrow(ccc_clean)

[1] 139580

nrow(ccc_types)

[1] 165730

We’ll take the increased number of rows in ccc_types as an indication that the data is doing
what we want it to do.

Now let’s turn it into a function that separates rows by type:

separate_rows_by_type <- function(data){
data_expanded <- data %>%

separate_rows(type, sep = ";") %>%
mutate(type == gsub("\\s+", "", type))
return(data_expanded)

}

Even if we do not end up using this function for other datasets, it could be useful as a helper
function so we can use some shorthand in other functions that work with this expanded version
of the dataset.

Visualizing data

Functions can also be helpful for streamlining data visualization. For example, functions that
visualize user-specified subsets of data can be especially useful for creating dashboards.

Let’s say we’re interested in generating plots that illustrate event types over time for a given
date range. Let’s write a script for illustrating six event types over time: demonstration,
rally, vigil, protest, strike, and picket.

17

event_types <- c("demonstration", "rally", "vigil", "protest", "strike", "picket")

ccc_types_over_time <- separate_rows_by_type(ccc_clean) %>%
filter(type %in% event_types) %>%
count(date, type)

ccc_types_over_time %>%
ggplot(aes(x = date, y = n, color = type)) +
geom_line() +
facet_wrap(~type)

rally strike vigil

demonstration picket protest

202120222023202420252021202220232024202520212022202320242025

0

200

400

600

0

200

400

600

date

n

type

demonstration

picket

protest

rally

strike

vigil

Now let’s write a function that takes a vector of events and a data frame as input, then outputs
this data visualization on types of events.

Here’s what the body of the function will be based on:

event_types <- c("demonstration", "rally", "vigil", "protest", "strike", "picket")

ccc_types_over_time <- separate_rows_by_type(ccc_clean) %>%
filter(type %in% event_types) %>%
count(date, type) %>%
arrange(desc(n))

ccc_types_over_time %>%

18

ggplot(aes(x = date, y = n, color = type)) +
geom_line() +
facet_wrap(~type)

rally strike vigil

demonstration picket protest

202120222023202420252021202220232024202520212022202320242025

0

200

400

600

0

200

400

600

date

n

type

demonstration

picket

protest

rally

strike

vigil

visualize_types_over_time <- function(df, event_types = c("demonstration", "rally", "vigil", "protest", "strike", "picket")){

df_types_over_time <- separate_rows_by_type(df) %>%
filter(type %in% event_types) %>%
count(date, type)

df_types_over_time %>%
ggplot(aes(x = date, y = n, color = type)) +
geom_line() +
facet_wrap(~type)

}

visualize_types_over_time(ccc_clean)

19

rally strike vigil

demonstration picket protest

202120222023202420252021202220232024202520212022202320242025

0

200

400

600

0

200

400

600

date

n

type

demonstration

picket

protest

rally

strike

vigil

Since we include a vector of event types as input for the function, we can use this function to
visualize other event types:

visualize_types_over_time(ccc_clean, event_types = c("caravan", "bicycle ride", "walkout"))

bicycle ride caravan walkout

202120222023202420252021202220232024202520212022202320242025

0

30

60

90

120

date

n

type

bicycle ride

caravan

walkout

Discussion Q2 What other arguments could we add to this function?

20

Iteration

purrr::map()

Now that we understand how functions work, we can start applying them repeatedly across
multiple elements. This process is known as iteration.

In R, iteration refers to the application of the same operation to every item in a vector, list, or
column. This includes:

• Applying a function to every row/column of a dataset
• Calculating summary statistics for every country in a panel dataset
• Cleaning a batch of interview transcripts

The classic way of iterating involves for loops. Let’s say we want to set every word in the
following vector to lowercase:

regime_types <- c("Democratic", "Authoritarian", "Hybrid")

for (word in regime_types) {
print(tolower(word))

}

[1] "democratic"
[1] "authoritarian"
[1] "hybrid"

While this technically would work, it can get verbose when applying code across lists of models,
multiple text documents, grouped datasets, and the like. At this scale, for loops can be really
hard to read, debug, or reuse. Which is the opposite of what we want to do!

The purrr package offers a tidier toolkit for iteration. Instead of writing out the for loops,
purrr’s functions will do the iteration for you.

The most common function used from the purrr package is map().

Let’s revisit our text cleaning example from before:

map(regime_types, tolower)

[[1]]
[1] "democratic"

[[2]]

21

[1] "authoritarian"

[[3]]
[1] "hybrid"

So much easier! It more or less does the same thing, but returns a list.

If you wanted a character vector instead of a list, you can use the map_chr() function:

map_chr(regime_types, tolower)

[1] "democratic" "authoritarian" "hybrid"

purrr also has other variants of map() that produce other types of vectors:

• map_int(): integer vector
• map_dbl(): double vector
• map_chr(): character vector
• map_lgl(): logical vector

Let’s try some more examples with the CCC data.

Let’s start with a tibble containing information on whether arrests, injuries to protesters, or
use of chemical agents took place:

incident_df <- ccc_clean %>%
select(

arrests_any,
injuries_crowd_any,
chemical_agents

)

str(incident_df)

tibble [139,580 x 3] (S3: tbl_df/tbl/data.frame)
$ arrests_any : num [1:139580] 0 0 0 0 0 0 0 0 0 0 ...
$ injuries_crowd_any: num [1:139580] 0 0 0 0 0 0 0 0 0 0 ...
$ chemical_agents : num [1:139580] 0 0 0 0 0 0 0 0 0 0 ...

All of these variables are binary indicators of whether one of these events took place.

Let’s say that we want to generate a vector that counts how many incidents of each type
occurred:

22

map_int(incident_df, sum)

arrests_any injuries_crowd_any chemical_agents
1776 441 124

The map variants will throw an error if your function doesn’t output the correct type of data.

map_lgl(incident_df, sum)

This is what the error message should look like:

If you’re getting this sort of “Can’t coerce” error, it means that you are using the wrong variant
of map function.

Anonymous functions

Until now, we have been only working with named functions. Naming a function is useful
when you need to run something more than once. If you only need to apply a function one
time, you may want to consider using anonymous functions instead. We can just write the
function body inside map() instead.

Remember the count_missings function we wrote earlier? Let’s find a more streamlined way
to count the number of missings across variables using map() and anonymous functions:

ccc_data %>% map_int(~ sum(is.na(.)))

23

date locality state
0 53 16

location_detail online type
9804 68 49
title macroevent organizations
84363 132123 38419

participants claims claims_summary
104366 9 671

claims_verbatim issue_tags_summary issue_tags_verbatim
97272 3525 105490

issue_tags valence size_text
2371 34 92885

size_low size_high size_mean
92783 92793 92783

size_cat arrests arrests_any
0 138045 0

injuries_crowd injuries_crowd_any injuries_police
139382 0 139803

injuries_police_any property_damage property_damage_any
0 139035 0

chemical_agents participant_measures police_measures
0 102520 129013

participant_deaths police_deaths source_1
139809 139822 80

source_2 source_3 source_4
78516 110953 125379

source_5 source_6 source_7
131851 134983 136451

source_8 source_9 source_10
137725 138421 138769

source_11 source_12 source_13
139009 139183 139309

source_14 source_15 source_16
139403 139463 139530

source_17 source_18 source_19
139577 139617 139647

source_20 source_21 source_22
139685 139709 139735

source_23 source_24 source_25
139754 139762 139775

source_26 source_27 source_28
139780 139786 139823

source_29 source_30 notes

24

139823 139823 59756
lat lon resolved_locality
61 61 812

resolved_county resolved_state fips_code
13546 93 126

If we are trying to calculate missing across multiple datasets, writing a named function may
be helpful. But if we just want to count missings on one dataset, this is the way to go.

dplyr::across()

In addition to the map functions, dplyr::across() also offers options for iteration. It is
typically used for data wrangling and applying the same function(s) across columns in a
dataset.

Let’s have a look at the documentation for this function:

?across

The three arguments that we should account for are:

• .cols: This tells R which columns in the data frame the function(s) should be applied
to. You can pass a character vector, tidyselect helpers (e.g. starts_with(“foo”)), or
use column positions.

• .fns:
• .names (optional): controls how the names of newly constructed columns will be con-

structed

Building on our example from before, let’s say we are interested in inspecting the number
of events where arrests occurred, protesters/civilians were injured, or chemical agents were
deployed.

Let’s first specify the three columns within the ccc_clean database that this would apply to,
then apply the sum function across these columns

incident_cols <- c("arrests_any", "injuries_crowd_any", "chemical_agents")

incidents_by_state <- ccc_clean %>%
group_by(state) %>%
summarize(

n_events = n(),
across(all_of(incident_cols), sum)

)

25

head(incidents_by_state)

A tibble: 6 x 5
state n_events arrests_any injuries_crowd_any chemical_agents
<chr> <int> <dbl> <dbl> <dbl>

1 AK 267 1 0 0
2 AL 1698 7 4 0
3 AR 485 4 2 0
4 AZ 2445 35 11 4
5 CA 21554 209 96 16
6 CO 2838 17 5 2

Let’s build a custom function to apply to this state-level dataset. Let’s say we are interested
in the percentage of events for each type of incident relative to the total number of events in
each state.

calculate_percentage_col <- function(x, n_events) {
x / n_events * 100

}

Now let’s apply it to our incidents_by_state dataset

incidents_tmp <- incidents_by_state %>%
mutate(across(

.cols = all_of(incident_cols),

.fns = ~ .x / n_events * 100,

.names = "perc_{.col}"
))

Finally, let’s check the structure of this dataset to double check that it’s working:

str(incidents_tmp)

tibble [53 x 8] (S3: tbl_df/tbl/data.frame)
$ state : chr [1:53] "AK" "AL" "AR" "AZ" ...
$ n_events : int [1:53] 267 1698 485 2445 21554 2838 1657 5867 172 4104 ...
$ arrests_any : num [1:53] 1 7 4 35 209 17 21 188 3 59 ...
$ injuries_crowd_any : num [1:53] 0 4 2 11 96 5 4 24 0 12 ...
$ chemical_agents : num [1:53] 0 0 0 4 16 2 0 7 0 2 ...

26

$ perc_arrests_any : num [1:53] 0.375 0.412 0.825 1.431 0.97 ...
$ perc_injuries_crowd_any: num [1:53] 0 0.236 0.412 0.45 0.445 ...
$ perc_chemical_agents : num [1:53] 0 0 0 0.1636 0.0742 ...

Exercise 3a Based on ccc_data, use across() and an anonymous function to convert all of
the the text in the claims, organizations, and title columns to lowercase.

text_vars <- c("claims", "organizations", "title")

ccc_data_lower <- ccc_data %>%
mutate(across(all_of(text_vars), ~ tolower(.x)))

ccc_data_lower %>%
select(claims, organizations, title)

A tibble: 139,823 x 3
claims organizations title
<chr> <chr> <chr>

1 against prison labor, for safer conditions in alabama pr~ free alabama~ <NA>
2 for ending israel's occupation of palestine, for palesti~ women in bla~ <NA>
3 for president trump contra costa~ <NA>
4 for peace, against war, for banning nuclear weapons wilpf <NA>
5 for president trump, against election fraud, against gov~ trump unity ~ patr~
6 for canceling rent and providing financial relief during~ <NA> <NA>
7 for safer streets for bicyclists, for community-building san francisc~ <NA>
8 for peace <NA> frid~
9 for free phone calls and video visitations and increased~ <NA> <NA>
10 black lives matter, against police brutality the valley o~ <NA>
i 139,813 more rows

Exercise 3b Use map_int() to create a new column in the ccc_clean data frame that contains
the number of characters in each entry of the claims column.

Hint: You can use the nchar() function to count characters in a string.

ccc_clean2 <- ccc_clean %>%
mutate(n_chars = map_int(claims, ~ nchar(.x)))

If the function was written correctly, the following code should work:

27

ccc_clean2$n_chars[1:10]

[1] 89 71 19 51 104 77 56 9 112 44

Tidy evaluation

If you mainly use tidyverse functions in your R workflow, functional programming will be a
little more complicated. This is because, when it comes to working with variables program-
matically, the tidyverse uses a system called tidy evaluation.

Writing functions that accept variables as arguments introduces a new challenge.
This is because they are treated differently between base R and the tidyverse:

• In base R, variable names are typically treated as placeholders that refer to objects in
the global environment.

• In contrast, tidyverse functions treat variable names as expressions that are evaluated
inside the context of the data frame itself. This is what makes the tidyverse more user-
friendly and dynamic; if a variable is treated as an expression, you can chain multiple
functions together to manipulate data at scale.

This difference introduces a tension when we try to write our own functions. Inside our function,
we want to let the user pass in column names, and use those column names in tidyverse
functions such as filter(), ggplot(), and group_by(). But R doesn’t automatically know
that those names refer to columns inside a data frame, rather than variables in the function
environment.

This is where tidy evaluation comes in. Tidy evaluation is the programming system that
powers tidyverse functions, bridging the gap between how variables are interpreted in the
global environment and how they are interpreted inside a tidy data frame.

The core tools of tidy evaluation are:

1. {{}} (a.k.a. embracing): Tells R to treat the argument as a column reference inside
a data frame, e.g.:

group_and_summarize <- function(data, group_var) {
data %>%

group_by({{ group_var }}) %>%
summarise(
n_events = n(),

)
}

28

2. …: Flexible arguments

When you want to pass a function though several expressions (e.g. filter() conditions or
group_by() variables), e.g.:

df_filter <- function(...) {
df %>% filter(...)

}

3. := (a.k.a. the “walrus operator”): Allows the output name to be created from the
input of a function, e.g.:

lowercase_column <- function(data, input_col, output_col) {
data %>%

mutate({{ output_col }} := tolower({{ input_col }}))
}

4. !!!: unpacks and passes multiple arguments in as if they were typed out manually, e.g.:

valence_map <- c(
"0" = "none/other",
"1" = "left-wing",
"2" = "right-wing"

)

ccc_recoded <- ccc_data %>%
mutate(valence_label = recode(as.character(valence), !!!valence_map))

Here’s a table that can serve as a small cheat sheet for these four tools:

Tool What it does When to use it
{ } Treats argument as a column name Always, for tidy column inputs
... Forwards user expressions For flexible filters, groupings
:= Assigns dynamic column names When user names the output
!!! Unpacks a list of named arguments When arguments are stored in a list

Let’s apply some tidy evaluation to data. There are two variables in the CCC data that include
text strings that are separated by semi-colons: type and claims. Let’s say we are interested
in tabulating the types of events or claims over time:

Let’s revisit the code we wrote for doing this based on type:

29

ccc_types <- ccc_clean %>%
separate_rows(type, sep = ";") %>%
mutate(type == gsub("\\s+", "", type))

Now let’s turn it into a function:

separate_rows_by_var <- function(data, var){
data_expanded <- data %>%

separate_rows({{var}}, sep = ";") %>%
mutate({{var}} == gsub("\\s+", "", {{var}}))
return(data_expanded)

}

Great! Now we can separate the rows based on type or claim.

separate_rows_by_var(ccc_clean, type)
separate_rows_by_var(ccc_clean, claims)

Exercise 4 Using a dataset of your choice, write a function that applies tidy evaluation.

Bonus exercise (if time)

Exercise 5 Practice writing functions based on an R script/dataset from your own work.

Additional resources

While we cover a lot of ground on applied examples in this short course, we will not be able
to cover everything there is to know about functions. Here are some resources that you can
consult on your own time in the event that you want to build on what we learned today!

• Debugging, condition handling, and defensive programming by Hadley Wickham (Ad-
vanced R4DS)

• Error Handling in R by Alboukadel Kassambara, PhD
• Functional programming by Sara Altman, Bill Behrman, Hadley Wickham
• Function Documentation by Hadley Wickham and Jennifer Bryan

References

Ulfelder, Jay. 2025. “Crowd Counting Consortium U.S. Protest Event Data, 2021-2024.”
Harvard Dataverse. https://doi.org/10.7910/DVN/9MMYDI.

30

http://adv-r.had.co.nz/Exceptions-Debugging.html
https://www.datanovia.com/learn/programming/r/advanced/error-handling.html?utm
https://dcl-prog.stanford.edu/
https://r-pkgs.org/man.html
https://doi.org/10.7910/DVN/9MMYDI

	Course Description
	Setup
	Functions 101
	Anatomy of a function
	Writing functions

	Applying functions to data
	Inspecting data
	Manipulating data
	Visualizing data

	Iteration
	purrr::map()
	dplyr::across()

	Tidy evaluation
	Bonus exercise (if time)
	Additional resources
	References

